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ABSTRACT

In the Stanford Radio Acoustic Sounding ~ystem (RASS), an electro-

magnetic signal is made to scatter from a moving acoustic pulse train.

Under a Bragg-scatter condition , maximum electromagnetic scattering

occurs. The scattered radio signal contains ten~erature and wind

information as a function of the acoustic pulse position .

In the theoretical work on RASS to date, the effects of such

atmospheri c parameters as turbulence , humidity , mean temperature, and

mean wind fields on the propagating acoustic pulse train have been

ignored . By neglecting these parameters, the quantitative analyses

have assume d that the acoustic wavefronts act as large perfect spherical

reflectors. In this investigation , RASS performance is assessed in a

real atmosphere where “co herency ’ of the acoustic pulse is degraded as

it propagates vertically into the lower atmosphere. The only assumption

made is that the electromagnetic wave is not affected by stochastic

perturbations in the atmosphere.

Coherency of vertical acoustic-wa ve propagation is described

through a perturbation-theoretic method and Feynman ’s diagraninatic

technique . One of the most important attributes of this analysis is

that it systematically and expl i citly accounts for multiple scatteri ng

of acoustic waves in the presence of atmospheric fluctuations. The

coherency resul ts are then used to evaluate the strength of the scat-

tered electromagnetic signal from the acoustic pulse train while taking

into account the presence of turbulence , mean temperature gradients ,

and mean wind fields .

It is concluded that, for acoustic pulses wi th carrier frequencies

below a few kilohertz propagating under typical atmospheric conditions ,

v _ _ _ _ _ _ _ _ _ _ _ _ _ _

4,’, .~
, ID? 111~~ I~L . . ~~

.. _

~~~~~~~~~~~~~~~~ 

...



:
‘
~~~

‘ 

~~~~~~ 
~~~

turbulence has little effect on the strength of the received radio

signal at heights up to a few kilometers. This result implies that

focusing of RF energy by the acoustic wavefronts is pri marily a function

of sound Intensity which decreases as x 2, where x denotes altitude .

The effect of mean vertical wind and mean temperature on the

strength of the received signal is also demonstrated to be insignifi-

cant. Mean hori zontal winds , however , shift the focus of the reflected

electromagnetic energy from its origin , resulting in a decrease in

received signal level when a monostatic RF system is used. For a

bistatic radar configuration wi th space-di versi fied receiving antennas ,

the shifting of the acoustic pulse makes possible the remote measure-

ment of the hori zontal wind component.
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SY,~ OLS

Symbols most often used in the text are defined below ; others are

defined as they occur.

ag temperature gradient in lower troposphere

A proportionality constant measuring outer scale
of turbulence

Ar effective area of receiving antenna

B proportionality constant measuring inner scale
of turbulence

B~(F~r’) covariance of random field p(i)

c(~) velocity of sound
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c~ specific heat of air at constant pressure

c~ specific heat of air at constant volume
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C2(x) refractive-index structure parameter of random
field p(r) at altitude x
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parameter at altitude x0

d imaginary part of compl ex acoustic wave number h

d5~~ 
diameter of scattering volume for electromag-
netic energy

dt total deri vative with respect to time , dfdt

da(x ,K ) two-dimensional Fourier-Stieltjes measure of log-a amplitude of a scattered sound wave

du (x,~~) two-dimensional Fourier-Stieltjes measure of
acoustic refractive index
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, U . V  j
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( r ’~r ’ )  s t ruc ture  tu I IF .’.j Of l  ‘~~‘ randovi f i e l d  p ( r )

Dyson ’s operator

e . j shear strain tensor

— 

E( r) e l e c t r i c  ‘ eld Lt pw er t

E0 ( r  ) electr ic f ie ld  in f r e e  space

E 1 (0) . F catte red el r F e~r e  t j C  5 1  (J h d  1 , co i l r~~ ted a’
receive ’

aco

~

c frequency

electror iiagnetic frequency

complex conj ugat e of F

magnitude of complex number F

~ 
). - two -dimensional spectral density of ra rido f i~~ J

pft) in a medium wi th smoothly var y ing mean
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F~ (x .. ) two-d iuj ens iori r i l spectral density of random f i e ld
p (r) in the plane x = constant

Fx 5 (X
~

. ) two-dimensional log-amplitude phase e~~ t i i  of
scattered acoust ic wave

Gas 
maximum gain of acoustic source

Ga (r ,O) Green ’ s function for acoustic -w ave propagation
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P0 re ference pressure

P total pressure in the fluid
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fluid stress sensor
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zontal winds
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~) perturbed phase of acoustic wave
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Chapter I

INTRODUCTION

During the past few years , a Radio-Acoustic-Sounding-~ystem (RASS)

has been developed for real-time temperature profiling the first few

kilometers of the l ower troposphere [Marshall , 1972]. The basic physics

of the RASS is as follows .

The electromagnetic refractive index of air (above 30 MHz) in the

l ower troposphere is not exactly unity but is a function of pressure ,

temperature , and humidity [Bean and Dutton , 1968]. Because of its

pressure dependence , this refractive index can be altered by a short

pulse of sound from an acoustic source. An electromagnetic RF signal

generated by a radar passes through the sound pulse and is scattered as

a result of the induced refractive-index variations. The scattered RF

si gnal is collected by a receiver and is processed to determine atmo-

spheri c temperature as a funct ion of the acoustic-pulse position (range).

In a stat ic atmosphere , the received signal is maximized when a Bragg

condition is established between the acoustic and electromagnetic sig-

nals. This occurs if the electromagnetic wavelength is twice the

acoustic wavelength and results in an in-phase addition at the receiver

of the electromagnetic signal scattered from successive acoustic wave-

fronts in the pulse.

A doppler radar measures the speed of the sound pulse. Because the

speed of sound in air depends on its temperature , the temperature pro-

file of the lower atmosphere can be obtained with the RASS [Frankel and

Peterson , 1976]. Fig. 1 illustrates the geometry of a bistatic RASS

wherein the acoustic source is located between separated RF transmit and

1 
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INCIDENT RF \\REFLECTED RF
ENERGY ENERGY

RA DAR ACOUSTIC RADAR
TRANSMITTER SOURCE RECEIVER

Fig. 1. REFLECTION OF ELECTROMAGNETIC
E N E R G Y  FROM AN A COUSTIC PULSE FOR A
RASS BISTATIC GEOMETRY .

receive antennas. In a monostatic RASS , the antennas and acoust ic source

are located at the same point.

In an early study at Stanford University , the ref lec i lon of e lectro-

magnetic energy from an acoustic pulse propagating vertically into the

lower atmosphere was ana lyzed at a carrier frequency of 85 Hz [Marshall ,

• 1972 ]. In that study Marshall assum ed a static atmosphere ( no turbu-

lence and winds ), and he made no attempt to determ i ne the feasibility

of operating the RASS at acoustic frequencies higher than 85 Hz which

offers the advantage of a smaller system and an increase in the resolu-

tion of the measured atmospheric parameters .

In contrast to Marshall ’s analysis , this investigation considers

~~~ the interaction of electromagnetic and acoustic waves when the RASS

2
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is operated in a stochast ic environment characterized by turbulence ,

wi nds , and mean-temperature gradients. These atmospheric parameters are

important when evaluating RASS performance because they could affect

the spatial co herency in and between the aco ustic wavefronts of the

transmitted acoustic pulse. This decrease in coherency would reduce the

received signal levels.

An analysis of the effects of turbulence on the coherency of the

acoustic wave shows that the acoustic wave amplitude at an altitude x is

damped by a factor exp[_ <lipi (x ,~a)I
2>/2] because of complex-phase

intereference . In this damping factor , ‘~l
(x,9a) is the first-order pertur-

bation in the complex phase of the acoustic wave due to turbulence . As

shown herein , these complex-phase perturbations of the acoustic wave

are small in the lower troposphere ; consequently , for acoustic pulses

with carrier frequencies below a few kilohertz propagating (under typical

atmospheric conditions) to altitudes of a few kilometers , turbulence

has little effect on the strength of the received radio signal. More

particularly, it is shown in Chapter IV , that for an altitude x of the

acoustic pulse much less than the coherence length of propagation Xc i

the effect of turbulence on RASS performance is insignificant. This

coherence length of propagation derived in this investigation is given by

[54.8_(1.833 - ma )
~

6
~~~~

6 ma)
X = 

~~~~~~~~ 

k~ A
513 x~~~ j  

(1.1)

In the above equation 
~a 

is a factor determining the acoustic

refractive-index structure parameter in the presence of inhomogeneous

• 
- turbulence , C~0 is the refractive -index structure parameter at altitude

x0, ka is the acou stic wave number , and A is a proportionality constant

3
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Ineasuring the outer scale of turbu l ence. It is observed that the coheren-

ce l ength varies inversely with frequency and the strength of the turbu-

l ence. As an example of the application of Eq. (l.l), consider a RASS

operating at an acoustic frequency of = 2 kHz and assuming the folio-

wing typical values for the parameters in the equation ; C~~ = lO~ m 2”3,

= 1 m , A = 2 , ma = l.33,and the velocity of sound c0 
= 340 m/sec ,

the coherence length is found to be X
c 

= 4 x ~~ m. This value of cohe-

rence length implies that the coherency of an acoust i c wave i s not

affected by turbulence when 1a 2 kHz and x<< 4 x lO 7m.

Quiescent atmospheric conditions such as temperature gradients

cause the dispersion of acoustic wavetrain. Under these circumstances , a

ma tch between electromagnetic and acoustic waves can be obtained by the

use of a modified Bragg-scatter condition. This match depends on the

temperature difference over the length of the acoustic wavetrain. This

s tudy shows , however , that typical temperature gradients in the lower

a tmos phere , which are on the order of - 6.5°K/km , have a negligi ble

effect on the received power of a RASS. The effect of vertical winds

on the s trength of the receive d radio s i gnal can be overcome

similarly.

This investigation also shows that mean horizontal winds shift the

focus of reflected electromagnetic energy from its origin , resu l t i ng i n a

decrease in received signal level when a monostatic RF system is used .

Because the acoustic wavefronts act as large spherical reflectors , the

princi ple of specular reflection , however , can be utilized in a bistatic

radar geometry to remotely measure this wind component ( in addit ion to

a tmospheric temperature profiles ).In this RASS configuration , the ra dar

antennas and acoustic sources are aligned in the wind direction -- the

4
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transmit antenna upwind from the acoustic source and the receive antenna

downwind. This technique offers the promise and potential of measuring

horizontal wind velocities of magnitude up to a few tens of meters in the

lower troposphere. Consistent with these theoretical predictions Frankel

et al.,[1977] have utilized this principle of specular reflection to

measure horizonta l winds in the lower troposphere .

The analysis in this study was restricted to the lower troposphere

however , it can be modified to study this diffraction phenomenon in any

media. The mathematical and physical representations of the acoustic

refractive-index field and atmospheric turbulence , following Tatarskii

[1961 , 1971] and Yaglom [1962], are presented in Chapter II. Acoustic~
wave propagation in a turbulent medium is discussed in Chapter III ,

and Feynman ’s diagrammatic approach is used in Chapter IV to derive

measures for the coherency of a vertically propagating acoustic wave .

Results obtained in Chapter IV are applied in Chapter V to develop

asymptotic expressions for the electromagnetic energy scattered from an

acoustic wavetrain perturbed by atmospheric turbulence , mean temperature ,

and mean wind-fields . Chapter VI discusses the effect of the mean wind

field on received doppler frequency. Chapter VII summarizes the conclu-

sions of this research.

5
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Chapter II

ACOUSTIC REFRACT IVE-INDEX FIELD

Acoustic and electromagnetic waves propagate in a stochastic medium;

however , the naturally induced fluctuations in the acoustic refractive

index are approximately one thousand times greater than those in the

electromagnetic index [Little , 1969]. For this reason , natura l fluctua-

tions in the electromagnetic refractive index are ignored in this study .

The acoustic refractive index depends on wind , temperatu re, and

humidity , and the stochastic variations in these parameters constitute

the phenomenon known as “atmospheric turbulence .” In this chapter ,

random fields are described; the mathematical analysis follows Tatarskii

[1961 , 1971] and Yaglom [1962]. This analysis ~s then extended to

describe atmospheri c turbulence and its effect on acoustic refractive-

index fields in the lower troposphere .

A. Random Fields

Physical quantities such as atmospheric temperature , wind , density ,

and pressure are continuously distributed in space and time and , conse-

quently, defy deterministic description. These can be described , how-

ever , in terms of random fields whi ch are random space-time functions.

In this section , random-field theory is descri bed , with emphasis on

meteorological applications.

1. Statistical Representation of Homogeneous Random Fields

Let p( VF) be a random field , where r is the space coordinate

and let denote the mathematical expectation of a random function.

The mean of the random field is <p(r)>, and its covariance is defined

as

~~~~~?flt~4 ~~~~~ ~ T.I ~~~~~~~~ - 
-

C a  - --- — -— -— -V ~~~~~~~~~~ 
_ ~~-~J I L  
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B(r ,r’) = - <P(r)>] [p (r’) - <P (r
~>]> 

(2.1)

(asterisks denote complex conjugates). A random field is “homogeneous”

if its probabili ty distribution function is invaria nt under a space

translation ; it is “homogeneous in the wide sense” if

= constant (2.2a)

and

~~~~~~ = B~ (r- r ’~ O) B~ (’~_ i ’ )  (2 .2b)

Henceforth , such fields will be referred to as “ homogeneous random

fields .”

For an isotropic homogeneous random field , B~(r) = B~(r)

where ~~ r is the magnitude of the vector r. When <P(r)> = 0,

p (
~) has a Fourier-Stieltjes expansion,

p(~) =J~~~e
U
~~
’ dW(~) (2.3a )

such that

= 0
(2.3b)

<dW(K)dW (K ’)> = ~~~~~~~~~~~ d~~’

and ~ G )  > 0 is the spectral density of the field where

B~(~) fffe~~~
r 
~~~~~~~ (2.4)

When the medium is isotropic , =

8 
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The above equation descri bes globally homogeneous random

fields ; however, in the lower troposphere , meteorological variabl es

are not statistically homogeneous . Homogeneity is violated by large-

scale events and , therefore , it is necessary to consider locally homo-

geneous random fields .

2. Locally Homqgeneous Random Fields and Structure Function

A random field is locally homogeneous if the probability

distribution of [p(~) - p(P)] is invariant under a joint space

translation of the points r and ~~~
‘ . Such fields are described by

“structure functions ” fi rst introduced by Kolmogorov 11941]. This

funct on , for a real-valued random field , is defined as

~~ 
- <P(r)>] - [p(~~) 

- ]
~>

Physically, D~(r~r’) depends on the scale sizes of the inhomogenei ties

in the atmosphere , which are less than ,‘ — r ’ t .

For a locally homogeneous random field ,

D~(r~r’) = D~(r- r’~0) D~(~-~ ’) (2.5b)

If the field is also locally isotrop ic , then D~(~) = D~(r).
The Fourier-Stieltjes expansion of a locally homogeneous

random field is

pft) = p (O) + ~~~ +f ([e r 
- 1] dW(i~) (2.6)

where p(O) is a random vari able and is a random vector. If

= 0 and
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p(~ ) = p(s) +fL (’[e
~ 

‘ 
- l J dW (~) (2.7a)

such that

0 (2.7b)

d3 
- d3 (2.7c)

0 (2.7d)

then

= 2Jj / ’~[ l  - ~~~~~~~~~~ d3r (2.8)

If this field is also isotropic, then •~~(K) = ~ (K). The cova riance

and structure function of a homogeneous and isotropic random field are

related by

D~(r) = 2[B~(0) - B~(r)1 (2.9a )

Because B~(~) = 0 for a phys i cal random field , D~(co) = 2B~(O) and

B~(r) = ~~ [D~~(cx ) - D~(r)] (2.9b)

In this subsection , a three-dimensional spectra l expansion of

a locally homogeneous random field was made , and a two-dimensional

spectral expansion is described below.

3. Two-Dimensional Fourier-Stieltjes Representation of Locall y
Homogeneous Random Fields

The two-dimensional Fourier-Stieltjes expansion of a random

field pft) in the plane x = constant is

10
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p(
~~~) 

= p(x ,0,0) ÷,,ã[e~~ 
- 1] dsp (x

~~a
) (2.lOa )

where

= (
~
c2,~

c
~~
) (2.1Th)

= (y,z) (2.lOc )

p(x ,O,O) is a random function and

= ~~~~~~~~~~~~ d2 
~a 

d2 ~ (2.lOd)

F~(x~~~) = F~(_x~~~) (2.lOe)

As shown by Tatarskii [1971], the two-dimensional spectrum F~(x~K )

and the structure function are related by

- D~ (x-x ’~ O~O) = 2ff[l - cos (
~~~~

‘)] F~(x-x ’~~~)d
2 
~

(2.lOf)

When ~ = x-x ’ = 0, y-y ’ = n, and z-z ’ = 
~~, the above equation

becomes

D~(On ~~) = 2ff[l - cos( K
2fl +K 3~~

)] F~(O~K2~K3) d~2 dK3 (2.lOg)

The two- and three-dimensional spectral densities , defined in Eqs .

(2.lOa), (2.lOd) , (2.lOe), and (2.4), respectively, are related by

11
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Fp(~~~~) =f~~p
(~~)coS (K l ~)dK 1 (2.lla)

and

= -i-- f  F(~~~~)cos(K1 ~)d~ (2.llb)

I n  a d d i t i o n ,

= 2ff [Fp(0~~~) 
- 

~~~~~~~~~~~~~~ 
d2 

~ 
(2.12)

and

B~(~) ~~~~~~~~~~~~~~~~~~~ i
~a (2.13)

The two-dimensional Fourier-Stieltjes representation of locally homo-

geneous random fields will be used in Chapters III and IV to describe

the coherency of a propagating acoustic wave .

In the spectra l expansion of random fields , it has been

assumed that the medium has constant mean characteristics . In the

l ower troposphere , however , the intensity of fluctuations is smoothly

varying, and the above descriptions of random fields must be modified.

4. Medium with Smoothly Varyi~~j~1ean Characteristics

Following Tatarskii [1971], if the random field p(~) is

smoothly varying, then

D~(r~r’) = C~ (iEt~!E’ ) D~0)(~_i~ ) (2.14)

12
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The function D~
0)(r_r 1 ) represents the local variation of fluctuation

intensity and is defined for arguments with magnitudes much smaller than

the largest scale size events . The function C~((r+~’)/2) represents

the smooth variations and is approximately constant when F-F’I is much

smaller than the largest scale size event. Tatarskii demonstrated that

C~ ~~~ ~(O) (
_

) = (2.15)

and that

C~ (!~1_) F~
O) ( X _ x I

~~Ka) = F~ —~x_x ’~~~) (2.16)

These equations will be used to describe a spherical wave traveling

vertically into the l ower atmosphere which is locally homogeneous and

has smoothly varying mean characteristics .

B. Atmospheric Turbulence

The physical phenomenon associated wi th the deviations of energy

transportation processes in the atmosphere from its deterministic

description is called “atmospheric turbulence. ” The medium -describing

variables are random functions of four coordinates , space and time .

In this section , the effects of turbulence on the acoustic refractive

index are conside red. Let the acoustic refractive-index n(~) be

defined as

n(~) = <n(~)> 
+ n i (r) (2.17)

where <n(r)> 1 and <ni (r)> 
= 0. In addition , n1 (r) is the

fluctuating component of n(~) and is usually much smaller than unity .

13
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The random medium , the l ower part of the troposphere , generally is

not statistically homogeneous; however , the fluctuating acoustic refrac-

tive-inde x field is locally homogeneous. As discussed in subsection A .2,

such fields can be descri bed in terms of the structure function of n(r),

defined as

D(r ,r’) = <~n1 (~) 
- n l (~

I)}2> I < L ~ (2.18)

In  this equation , <n(~)> is approximately constant for [
~
-
~~

‘ I ~
where L is call ed the “outer scale of turbulence ” and is the least

distance between coordinates r and ~~
‘ for which Bn (r .r ’ ) 0.

For points separated spatially by distances greater than L0, the

c’variance function is zero.

The structure function for locally homogeneous isotropic turbulence

was fi rst obtained by Kolmogorov [1941]; according to his theory ,

c2 ~2/3 (_!\
2 

rn ~
0 (r) = (2.19)

2 2/3C r ~. << r << Ln o o

where C~ is the “structure parameter ” and is a measure of the inten-

sity of fluctuations. The quantity J~~ is called the “inner-scale of

turbulence ,” and the interval between and L0 is the inertial

subrange. Energy is injected through some outside mechanism into L0.

According to Kolmogorov ’s cascade theory of turbulence , this energy is

then successive ly transferred to smaller scales of turbulence until it

reaches the size of where the viscous forces dominate and energy

14 
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is converted into heat. The scales of turbulence between and

• 

V 
are also often referred to as “eddies ” [Tatarskii , 1971]. Generally,

and L0 are functions of the vertical distance x above the

ground. According to Lawrence and Strohbehn [1970], L0 is on the

order of one to hundreds of meters, depending on the altitude ; Gray and

Waterman [1970] show to be on the order of a few millimeters . A

model for the outer scale of turbulence as a function of altitude x is

L0(x) = Ax 1”2 (2.20a )

where A varies from 1 to 10, with a typical value of 2 [Taylor, 1968].

Because only limited measurements exist for the inner scale of turbulence

[Lawrence and Strohbehn , 1970] and for mathematical simplicity , the func-

tional dependence of the inner scale as a function of altitude is modeled

as the outer scale. Therefore,

2~. (x ) = Bx~
”2 (2.20b)

where A/B = lO~ to lO
s. For example, at x = 1000 m and B = l0~~,

the size of the inner scale of turbulence is 2 3 mm .

In the l ower troposphere , the refractive-index field is locally

homogeneous and has smoothly varying mean characteristics in the vertical

direction x [Brown and Keeler , 1975]. The refractive-index structure

parameter C~ , as defined in Eq. (2.19), is a function of altitude x.

Consequently,

C
~

(x) C~O(~~) 
1.~3 > ma 

> 0 (2.2Oc)

15 
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where C20 = C~(x0). As x increases , C~(x) decreases and has a

maximum value near the ground. According to Brown and Keeler [1975],

ma is approximately equal to l.33,and C~0 ranges from l0
_6 

to

10 8m 213 at x0 = im.

C. Refractive-Index Spectrum in the Lower Troposphere

For isotropic homogeneous turbulence in the inertial subrange ,

Kolmogoro v ’s two-third structure function law results in the spectrum ,

= O.O33C~ 
-11/3 2’ti 

<< K << (2.2la)

For wave numbers K >> 2TI/2
~
, 

~~~~ 
is small and the corresponding

range of the structure function given in Eq. (2.19) for r 
0

Tatarskii [1971] used the following form for the spectrum.

2 2
= O .033C~ ~~~~~~~ e~~ 

/K 

< K (2.21b)

where K
m 

= 5.92/c.
~ 

2-nj20.

A d isadvantage of the above representation for 
~n
(K) is that it has a

singularity at ~
- = 0. As a result Tatarskii’ s spectrum does not

possess an autocovariance function. An alternative representation of

the spec trum , as suggested by Strohbehn [1968] and Lutomirski and Yura

[1971], is
2

~O.033C’ e
cj~ (

~ 
) = __ V V V J LV  

~~
-- -

~
--

~
-

~~~~
---- (2.22)n , ~- —

~~

0

where = 2 - - .
~ and L0 

= 2i~’t0. This spectrum is flat for K

16
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In the l ower troposphere , the turbulent medium generally has a

smoothly varying mean characteristic ; therefore, substituting Eqs.

(2.20a), (2.20b ) and (2.2Oc) into Eq. (2.22) yields

2 -[Kr ( x )] 2
0.033C (x) e

~ (x,K) = 2 2 ~
‘ 6 (2.23)

fl 
[K + .~~~~(x )]  /

in the plane , x = constant. This spectral expansion of the acoustic

refracti ve-index field will be used in subsequent chapters to descri be

acoustic-wave propagation in a turbulent atmosphere.

17
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Chapter III

ACOUSTIC -WAVE PROPAGATION IN THE LOWER ATMOSPHERE

In this chapter , the basic equations for acoustic-wave propagation

are deri ved. The theory developed by Tatarskii [1961 , 1971] is valid

for acoustic wavelengths A a much smaller  than  the i n n e r  scale of

turbulence z 0. By considering dissipation , however , log-amplitude ,

phase , and log-amplitude -phase spectra of the scattered acoustic wave

can be obtained over the range of acoust ic wavelengths pertinent to this

study . It is shown that Tatars kii’s results for optical propagation

are good approximations for acoustic wav es. These results are discussed

in Section A.

The equations governing acoustic-wave propagation are determined in

Section B. Ass uming that variation of the acoustic refractive-index is

much smaller than unity , w h i c h  is  j u s t i f i a b l e  under  t yp ica l  a tmosphe r i c

conditions , the acoustic-wave equation and the Rytov technique developed

in Section B are applied in Chapter IV to descr ibe the cohere ncy of a

spherical acoustic wave propagating vertically into the l ower atmosphere .

A. Sound Propagat ion in a Dissipative Atmosphere

A first-order perturbation so lution of the pressure equation derived

by Clifford and Brown [1970] forms the basis for computing the log-

amplitude , phase, and log—amplitude phase spectra of the scattered

acoustic wave . The atmosphere is considered to be dissipative , and

tensor notation is used. The ground is the reference level for devia-

t io ns in other physical parameters such as temperature . A static

a tmosphere is defined as one in wh i ch ground-leve l parameters exist

throughout the atmosphere .
19 - - - - -----——
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1. Fluid Dynamics

In  the absence of sound , the atmospheri c fluid velocity is

w . = <wi. > 
+ w~ , (i = 1 , 2, 3) in the half space x — 0; the con-

stant mean -wind velocity is <w 1> and w~ is the fluctuating com-

ponent having zero mean . The acoustic pulse is assumed to be beamed

in the positive x-direction from the origin and , in its presence, fluid

mot ion is V~ = w1 
+ u

~ 
where u

1 is the velocity caused by sound

waves . Mass flow is expressed by pV~., where p is the fluid density

and p0 is the static fluid density . The following notation is used:

B. = B/Bx ., = B/ Bt , and dt = d/dt where dt = + ~~~~ The

total pressure in the fluid is P = p
0 
+ 
~~ 

here p
0 

is the constant

stat ic pressure and 
~a is the acoustic pressure . In practice

<< 1 and p = p0(1 + ~) where 
~ 

<c 1. The shear strain

e
~3 . 

fluid stress and total momentum fl ux tensor t1~ are

defined as

~~ = ~~
- (~ .V .  + B~V 1 ) (3 . la )

P~~ = (P - A v BkVk)~
S i . - 2u~

e
~ 

(3.lb)

t. . = P.. + V . V .  ( 3 . l c )
VJ J  13 1 3

In these equations , = 1 for i = j and = 0 for � j,

and À y and are the volume and shear viscosities , respectively.

For an i deal gas He i the entropy, is

H = c lnP - c~~lni (3 . ld)

The sr,ecific heats of air at constant volume and pressure are c,~ and

20
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respectively , and the Laplace constant y is equal to c
p/c y . The

magnitude of the fluid velocity c can be determined from c2 = y2P/c =

YRgcT~ 
where Rgc is the gas constant and T is temperature . If C

0

and T~ are the reference fluid-velocity magnitude and temperature ,

respectively, then c2 
= c~ (l+T ); here T is the fractional variation

of temperature from the reference . In addition -r = <-r > + T’ ,

= 0, and T ’ contributes to the turbulence fluctuat ions.

Assuming that the externa l source terms are zero , the bas ic equations

of fluid motion , conservation of mas s, momentum , and adiabati c propa-

gatior of sound ~re

+ B~(pV~) = 0 (3.2a)

+ aj t~ = 0 (3.2b)

dtH 0 (3.2c)

D e f i n i ng Vf = U
~
/P0~ 

~~ = 2\)~ + A / p 0 
and a 

= Pa/’( YPo)~
then ,for slowly varying turbul ence , 

~a~~i~
t) = e a fl(x~); here W

a
i s the acous ti c angular frequency. Combi ning the above equat ions and

linear izing, resul ts i n the follow i ng equation for the acoustic p ressure

field

2 2 h2 2~h
2

V H + h II = — —
~~

- B . ( T ~~.TI ) + —
~
---

~~ B~3.(w.B.rI) (3.3)
ka coka

In this equation , = is the Laplacian operator , ka = wa~
’co3

h = k + id, and  d = k~ nf/(2c 0).

~ 21
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2. Fi rst-Order Perturbation Solution of the Pressure Equation

Letting II = no + ill then

V2fl + h211 = 0; H
0 

= A~e’~~ (3.4a)

and

3
V211

1 
+ h2TI

1 
= 2i !~ B

x (n
i
fl
o) (3.4b)

a

where the fl uctuation in the acoustic refractive index n1 i s

= - + 
~~~]; <ni> 

= 0 (3.4c)

Assuming this field to be locally homogeneous n1 and 
~1 are expanded

in their Fourier-Stieltjes measure as

i K . y
= n1 (x ,O ,O) + f f[e  

a a 
- 1] dp(x ,K ) (3.5a )

and

11K ~yn1 (x ,~~) = n1 (x ,0 ,0) +
~ULe ~ 

- i] d~(x ,~~) (3 .5b)

where n 1 (x,~~) real implies

dv (x,~~) = dv*(x ,~ K )  (3.5c)

du( x ,- T )  = dv (x ,~~) (3.5d)

22
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Because I~l I << 1r1 01 , ln(H/rI ) r11 /110. If ln(IT/H ) = - - + iS 1,

where x and 
~l are the perturbations in the log-amplitude ratio and

phase of the scattered wave , the Fourier Stieltjes measure d~ (x ,K ) of

the complex -phase x + iS 1 is r e la ted  to t h a t  of i1i (x ,
~a) by

dp(x ,)~~dq (x,K )  
~~~~~~~ 

(3.6)

Let  q = (h2 - K~)~~
2 , then

q = (a+ib)Y (k~-K
2
) + (b+ia)Y(K 2-k~) (3 .7a)

where Y(.) is the Heaviside step function defined by

0 x < O

Y(x) = 1/2 x = 0 (3.7b)

and 
a(~- )  = 

~ (I q I 2 + 2k:d)
112 + 1 (jq ~

2 
- 2kad)~~

2 (3.7c)

b(K) = 
~ 
(~q I 2 + 2kad)

V2 
- 

~~~ 
(1q 1 2 - 2k ad)

~~
2 (3.7d)

Writing 
Y÷ = Y ( K 2 

- k~) (3.8a)

and

V = Y(k 2 
- K2 ) (3.8b )

yields

q = (a+ib)Y + (b + i a ) Y~ (3.8c )

Using the forward-scatter approximation ,

23
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x (j9 1+92)(x’ -x)
d4 (x ,

~~
) = ik a I 

dv(x ’ ,~~
) e dx ’ (3.9)

Here , g1 = (k a -bY~ - aY) and g2 = (-d + bY_ + aY~). Note that

a , b , g1, and g2 are functions of

3. Log-Amplitude , Phase, an~j~~-Amp l itude-Phase~~pec tra

Assuming that turbulence is homogeneous , the Fourier -St ie ltjes

measure  of the log-amplitude ratio and phase of the scattered acoustic

wave dct (x,K )  and do(x,~~) are [Tatarskii , 1961]

d~(x,K~) = dct(x ,K ) + id~(x,~ ,~ 
(3.lOa)

[dq (x ,~ ~ + 
~q*(~~,_~ )]

da(x ,Ka) = (3.lob)

[d~(x,v ) - d~~(x,-K )]do(x,v ) = 2i 
a (3.lOc)

The log-amplitude , phase , and log -amplitude-phase spectra of the

acoustic wave can be obtained by computing certain auxil iary spectra .

From Chapter II.A.3 , the two-dimensional refractive-index spect rum

F ( x ’ —x ” is

<d-~
(x’ ,~~~)dv* (x I ,~~1)>  = ~~ ~~~~~~~~~~~~~~~~~~ (3.lla)

and

= S (v~~Is - ’)F 1 (x,0,F ) d 2~~d
2K ’ (3.llb)

= 
~~~~~~~~~~~~~~~~~~~~~ 

(3.llc)

24
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where , from Eq. (3.9),

— 2 
X X 

— 
[ig1 (x ’ -x ”) + g

2
(x ’+x” -2x)]

Fl (X~
0IK

ci
) = k 

•~
[

~7 
F

n (X ’ _ X ”
~~

K )  e dx ’dx ”
0 0 

(3.12a)

— 2 
x x 

— 
(ig1+g2)( x ’+x”-2x)

F2(x,O,K )  = _ k
a Fn (x ’ _x ” ,K )  e dx ’dx ” (3.12b)

The above equations can be evaluated by noting that Fn (r , )

is even in ~ and , by using the substitution x ’-x” = ~., (x ’ +x ”) /2 =

2 x
Fl (X~

O)
~ct) 

= 
jif 

Fn(~~~~
) e

92 cos(g1~) d~

2 x

and 

2 

- 
~~~~2~2x

f 
Fn (r

~
,;) e

92
~ cos(g1~ ) d~ (3.l3a)

-- 
-k 

— 
-(1g 1+g2)~F

2(x ,O ,1.~- )  = 

~1g1+g2 ) f  Fn (~~
Ka

) e d~

k2 -2(ig 1+g2)x 
x (ig 1+g2)r

+ (ig +g~) 
e J. Fn(~~Ka) e d~ (3.l3b )

Because the major contribution in these expressions arise from ~ < L0,

the contributio n of real terms in the exponent factor of the integrands

is negligible , and

25
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1

X . x
- 

ig 1 r - -f  ~~~~ )e dc = f  F~ ( )c os( g1~ )d.~ (3.14a)

C 0

Furthermore , significant contribution to F1 (x,O,~~ an d F2(x ,O, )

resul ts from < L~ << x , hence the upper limits in the integrals in

Eqs. (3.l3a) and (3.l3b) can be replaced by infinity . As shown in Chap-

ter II .A.3 , the three-din iensional refract ive-index spectrum , ~~(~
- ) ,  i s

2~~~(~~
2+~2 )= JF E.. )e~~~ d.~ (3.l4b)

therefo re

2

F 1 (x , O.~~ ) = -~~-~~~ ~(~~
2~q~ )[l - e ’]  (3.l5a)

- k 2 / --
~
- -

~~\ F -2(i g 1 +g2)x~
— F2 (x ,0 , .  

) 

= (jg 1 ÷g
V~~ 

~~ ,+g 1 1 [-1 + e J (3.15b)

Because F 1 (x ,0,~~) is real and a function of 2 an d F2(x ,0.~- ) is

comp lex and a func t i on of

<d ~(x,~~ )da
*(x ,~ 1)> = 

~~ -~~ )F (x ,0,~ ) d2~ d2K ’ (3.

- -  * — 2— 2--• 
<d; (x,- )dG (x,~

- ’)> = o (~- -~ ~)F 5(x ,0, ) d K d ~
‘
, 

(3.16b)

<d~
t(X ,- ) d~~(x ,~ )> = ~~~ ‘)F 5(x,

0,~~) d
2
’ d2~ ’ (3.l6c)

where

[F1 + Re(F 2)J
F = •~~~~~~~~ ( 3. l7 a)

~~~~~~~ 

_ _ __
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[F 1 - Re(F 2)]
F = (3. l7b~s 2

Im(F 2)F = (3. l7c)
xs 2

Re(F2) and Im(F 2) denote the real and imaginary part of the complex

numbe r F . Here F (x,O,~ ) , F (x ,O,~ ), and F (x , 0,~ ) are the2 x a s a xs a
log-amp litude , phase , and log-ampl i tude phase spectra of the scattered

acoust i c  wave , respectively, and F , 
~~ 

and F can be calculated

from Eqs. (3.15) and (3.17). Limiting forms of F , F
~ 

and F
~~

are examined in the following cases .

Case 1: L a a

In this case , Y÷ 
= 0, V = 1, h ka~ a = I q i , ka

_ a

b — d , g 1 
= 

~
2/ (2k a )

~ 
and g2 = 0. As a result ,

F1 
= 2 k

~
x
~n (K ) (3.18a )

F -iK x / k
2 1  a a ,

F,, = 2 ~i k  - 
- ‘ -

~~~~~(K ) (3.18b )a 
(jK 2/ k )  

n ~~

anti 

a a

2 Sin(K2x/k )
F = irk x 1 — 

2 
a 

~ ~ 
(3.lga)x a (KaX/ka) 

n -~~

2 sin(~
2x/k

F = it k x 1 + 2 
a a :- (

~ ) (3. 1gb)
- s a (v x/ka)
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Fxs 
= iik2x (_t)[l - cos(K2x/k )] 

~~~~~ 
(3.1 9c)

The above expressions are identical to those derived by Tatarski i [1971]

but were obtained via a different approach.

Case 2: k .
~ a

In this case , Y÷ 
+ V = 1 , 

~I = (2kad)
112

~ 
a = b = (k ad) 112

~
ka~ 

and g2 
= (kad)

1”2 ; therefo re ,

-(k d)~
’2 xfsinh1 (k d)L’2x]\ —F1 

= 2irk e 
I
\ (k ad) l~

2 
)~n ( 2 ~~ (3.20a )

I -(ik +(k d)112 )2x 1
F2 

= (iik~) 
Le 

ik ~~~~ 
K )  (3.20b)

and

-(k d)L’2x sinh((k d)L’2x) -(k d)L’2x/sin (2k x)\
F = irk~ e 

a 
~ (/~~~ 

a 
- e a a

x a n a (k d)~~
2 2k

( 3.2 la)

-(k d)V2x Isinh((k d) 112 x) - (k  d) V2x(sin(2k x)\
F
~ 

= irk e 
~n 

~ 
[ (kad)

1/2 
+ e 

I~~ 2k
a )

(3.2lb)

k -(k d)~
’22x 1

= —
~~

-
~~

- 1 - e a cos( k
a2x)j ~~~~ ~~

) (3.2lc)
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Case 3: K >> k .

In  t h i s  case = 1 , V = 0, h = ka~ 
a j q~ , g

1 
ka~ 

and

~2 a - d K .  Consequently,

2irk
F1 

= 

~ ~n
(Ka) (3.22a)

irk2
F2 

= - T~ ~n~~) 
(3.22b)

and

F = 0 (3.23a )

u k 2

F = —p 
~ (K ) (2.32b)s ~ n ~a

F = 0 (3.23c)xs

Normalized F , F , and Fx~ 
that is , f = F /(uk

~
X
~n
(
~~

))
~

f = F /(ur k
~
x4rn (Ka)), and f 5 

= F
~s

/(ur k
~
x
~n

(K )) are plotted vs

normalized wave numbe r Ka/(ka/X)
1”2 in Fig. 2, which shows the behav-

ior of these normalized spectral functions . It can be observed that

these functions are oscillatory at low wave numbers and that for large

wave numbers , f and f5 are equal but f 5 decreases rapidly. The

function f 5 is negligibly affected by damping over the entire range

of wave numbers ; however , the shape of the and f5 spectra is

altered slightly.

These log-amplitude , phase , and l og-amplitude -phase spectra

are largely dependent on wave numbers K << ka that correspond to
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Fig. 2. NORMALIZED SPECTRAL FUNCTIONS VS NORMALIZED WAVE NUMBER.
ka 

= 10 rn-1 and x = 1000 m.

turbulent eddies which determine the spectrum of the refracti ve-index

fluc tuations . Eddies with K > ka produce evanescent waves. It

can be concluded that, because ~~(r) ~ K
1”
~ , these spectra are

determined by refracti ve-index fl uctuations rather than by absorption in

the med i um. As a result Tatarskii ’s resul ts derived for << 
~o 

are

goo d app ro dmations for L0 > A
a 

>

In this section plane-wave propagati on was assumed ; however ,

the conclusion that ‘ the formulas der i ve d on the assumption that

A << 
~~~ 

are good approximations for -‘ 

~~~

‘ are unaff ecte d , whe ther

the type of propagation is plane , spherical , or beam .

B. Acoustic-Wave Propagation

In this section , the equations governing acoustic-wave propagation

are developed .
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1. Acoustic Time-Harmonic Wave Equation

Let the acoustic pressure impressed on the medium resulting

from an external source be Pa(r’,t) = u (?)e a Because 
~a 

is

directly proportional to 
~a which , in turn , is directly proportional

to 11, an equation for ua(~
) can be wri tten similar to Eq. (3.3).

In the lower atmosphere, d << ka and , as a result , the effect of

dissipation is neglected in this analysis. In practice , IT I << 1 and

Iw I /c 0 << 1 , where I~ I is the magnitude of atmospheric fluid velocity.

After preserving the terms linear in T and w~/c0~ it can be demon-

strated that [Tatarskii , 1971]

V2u(i ) + k
~
n2(

~
)ua(~)= 0 x > 0 (3.24)

where

n2(~) = <n
2(~ )> 

+ 2nl (~~ 
(3.25a)

— 

<n
2
(~)> = 1 - - 2 ~—~~> (3 .25 b )

= - - - <w.~ .>) (3.2 5c)

<nl (r)> 
= 0 (3.25d)

= unit vector tangent to the ray

The dummy parameter ó measures the smallness of n1 (r)

which is the variation of the acoust ic refractive-index from its avera je

value ; generally, <n(F)> is approximately unity and In 1 (~) !<<  1.

The above time-harmonic scalar wave equation describes the acoustic-
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wave propagation in the half space V
~ 

= {(x,
~a
) : 0 < x +~~,

O < YaP <

When n )  = 1 , Eq. (3.24) reduces to the Helinholtz wave equa-

tion . Tatarskii [1971] demonstrated that the structure parameters for

the acoustic refractive index , atmospheric wind , and atmospheri c tempera-

ture (C~, C~, and C~) are related as

2 r2
2 C1 ~= —~- + —

~
- (3.25e)

4T0 c0

This equation also reveals the relationship between the structure param-

eters of the acoustic refractive index , temperature , and wind velocity .

Eqs. (3.24) and (3.25) are applied in the next section and in Chapter IV

to compute the first and second statisti cal moments of a spherical

acoustic-wa ve propagating vertically into the atmosphere .

2. Rytov ’s Technique

Using Rytov ’s transformation , ua 
= exp r~ [Barabanenkov et al ,

1971]. The perturbation in complex phase-amplitude , r4, is computed as

ua(~
) = Aa(F) exp[iSft)] (3.26a )

= in Aa(r) + iSft) (3.26b )

When this transformation is applied to the scalar-wave equation , the

Ricatti equation in ip

+ (v~) 2 + k~n2 = 0 (3 .27)
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is obtained and ip(F) is then expanded in power series of a dimension-

less parameter 5 as

= o’~ rp. (~ ) (3.28)
j=O

Using Eqs. (3.25a), (3.27) and (3.28) and equating to zero terms of

lik e powers in ~ result in

+ . 
- k

~<n
2> (3.29a)

+ 2v~0 
. V~ 1 

= -2k~n1 (3.2gb)

Note that solving Eq. (3.29a) is equivalent to solving

~~
Uao + k2<n

2
>u = 0

which is Eq. (3.24) wi th 5 = 0, and Uao 
= exp 

~~ 
Equation (3.2gb)

can be solved via the technique outlined in Schmeltzer [1967]. Assum-

ing that <n(~)> 
= 1 ,

= _2k 2J~ n l
(r)_ (Vr; 

G (~,~’) d3 ~~
‘ (3.30)

ik IF-F’ I
where G (~,~’) = - 

e 
— —  (3.31 )

4urjr- r ’ j

If U~~(~~) 
= Aao(V) exp [iS0(F)], (~ 

- 

~ ) measures the fl uctuation in

logarithmic -amplitude and phase of the scattered sound wave.
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- = in + i(S - S0) x + iS 1 (3.32)

where x and S1 are the perturbations in logarithmic amplitude and

phase , respectively. Equations (3.30) and (3.31) will be used to

determi ne the coherency of spherical acoustic-wave propagation in a

turbulent medium.
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Chapter IV

COHERENCY DESCRIPTION OF ACOUSTIC-WAVE PROPAGATION

The degree of interaction between electromagnetic and acoustic wa ves

depends on the coherency of the latter. As a result , coherency of spher-

ical acoustic-wave propagation in an i nhomogeneous atmosphere is exami ned

in this chapter via a perturbation theoretic approach .

A diagrammati c technique , introduced by Feynman [1948], serves as

a basis for the analysis and is used to perform a selective summation

of the perturbation series. Its basic philosophy is similar to that of

the method of smoothing which , in turn , is related to the Bogoliubov-

Krylov-Mitropo lski method for solving nonlinear differential equations

[Bogoliubov and Mitropolski , 1961]. These techniques are reviewed by

Frisch [1968] and Nayfeh [1973].

The coherency of an acoustic pulse propagating in a turbulent

medium is a measure of random fluctuations in and between successive

wavefronts and is determined by atmospheri c parameters . To simplify

the analysis , it will be assumed that the mean of the acousti c

refractive index <n(i)> is unity and that the varying part of

this refractive-index field n1 (r) has a gaussian probability density

function [Fante, 1975]. The acoustic source is modeled as a delta

measure at the ori gin of the coordinate system. Source parameters are

restri cted to be deterministic.

A. Firs t Moment of Acoustic-Wave Propagation

The fi rst moment of a spherical acoustic wave propagating in a

turbulent atmosphere is derived in this section and is then used to
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estimate the coherence length of the wave . This length is defined as

the alt it ude over which the mean acous ti c f iel d i s attenuate d by

resul t i n g from complex-phase interference. Given the notation

= (x,~~), the coherence leng th X IS

<Ga (x ,Y ;O )> = G 0(x ,~
7 ;O)e~ (4.1)

where Ga (x ,
~~

;O) is Green ’ s func ti on for the spher i cal acous ti c wave

propagating in the turbulent medium. To derive <Ga(x,Ya;O)>

Dyson ’s equation [Frisch , 1968] w i ll be solve d by means of Feynman ’ s

diagrammatic technique .

1. D~yson ’s Equation

Opera tor notation is used to simpl i fy the following presenta-

tion. Equation (3.24) plus the source function determine the amplitude

c~ the pressure wave as

= S (4.2)a ac

Here , Sac is assumed to be a delta measure at the origin of the coor-

dinate system and 1~ (V2 + k~n
2) is the linear stochastic differential

operator. In the above equation

= <~> + ~~
‘ <v’> = o (4.3a)

Ga 
= <Ga > + G <Ga> = 0 (4.3b)

where ~~~
‘ and G~ are the varying components of ~? and Ga • Using

Eqs. (3.24), (3.25a), (4.2), and (4.3),
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V

= + k2<n
2
> (4.4a)

~~‘ = 2k~ n1 (4.4b)

Therefore, from Eqs. (4.2) and (4.3a)

+ ~‘)G = Sac (4.4c)

G = G’ S - G ’ 
~‘G (4.4d)a ao ac ao a

where G~0 is the inverse operator of <f>. It is nontrivial to

solve the above equation for Ga; however , after formal iteration ,

Ga = 
L 

{_G
aoS~

’}J G~0 Sac (4.5)

This is called the Liouvi lle-Neuman n series and , because the random

medium is semi-infinite , this series diverges with finite probability .

Because <Ga> is to be computed , a relationship governing ~
‘
‘ 

>,

called the Dyson equation , can be obtained by the method of smo~~hing;

therefore , averaging Eq. (4.2) yields

+ <~
‘G
~> 

= Sac (4.6)

Subtra cting this result from Eq. (4~2) yields

+ 
i~~ av~ ~~

‘ = 
~~‘<G a> 

(4.7)

therefore,

Ga 
= _G

~o
(I i

_P
av )~

’ G~ - G ’
0~’<G > (4.8)
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where I~ is the identity operator and “av denotes the operation of

ensemble ave rag ing. By iteration , G~ can be determ i ned as

G~ = - 

~~ 
{~

G
I 

(IS -P ~~~} J G~0 Y ’ <Ga> (4.9)

Substituting for G~ in Eq. (4.6) results in

= Sac 
- 

(4.l Oa)

where i) = <-
‘I>  - ifl (4 .lO b )

and = <~
‘ { 0 (’

~~
-

~~~~~~
)
~~~

’ }3  G
80 ~‘> (4 .lOc)

Here )fl is called the mass operator and ~~, the Dyson operator
[Frisch , 1968]. Equations (4.lOa) and (4.lOb) yield

<G >= G~0S + G’~~11<G > (4.11)

The success of Dyson ’s method depends on the fact that <Ga > is

obtained by ite rating from Eq. (4.11) after approximating ill instead of

iterating G
a as in the Liouville -Neumann series and then averaging.

Because the expression for HI is complicated , use of Feynman ’s dia-

grammatic technique in the following section is justified.

2. Series Sol uti on of the ~~~~ t 1~gj ynman ’s Di ag rams

Feynman ’s diagramatic procedure is used to obtain a series

solut ion of the Dyson equat i on . In th i s te chnique , the source Sac is

the Dirac- delta measure 6(r) . Notin g that G~06(F 
- 

~
‘ ) i s equal to

Gao (r,r ’), the integral representation of Eq. (4.2) then becomes
38 
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G~~~
- ,O) = Gao(~~O) - 2k~ fG80

(~ ,~1 )n 1 ~~ 
)G (~~,O) d~~1 (4.1 2)

Formal iterat ion of this equation results in the expansion of Eq. (4.5)

G G ~,O) = Gao (~~0) 
- 2k

~fG o(~
,
~i )n i (~ 1 )G ao (r

1 ,O) 
d~~1

+ (_2k
~)fJ~

Gao (i~
,•F2)n i ft2)G ao ft2,~Fl )

n1 (
VF
1 )G 0(~ 1,O) d~~1 d~~2

+ . . . (4.13)

The above ser i es can be rep resen ted graphicall y w i th the follow i ng con-

ven ti ons:

C1 
--  Gao (r i , r2) is denoted by a short line whose end

po i nts are an d r2.

Gao (r1, r2) — — —

r1

C2 -- The random operator 
~~~V~~

’ = -2k2n 1 C~) is desi gnated

by a dot p lace d on the d i agram at ~~, sometimes

called a ver tex :

-2k~n 1
(r)

C3 
-- A dashed line joins the vertices for which

4k
~ <ni (F2)n i (F1 )> is evaluated:
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-___

4k4<ni (~2
)n i (~ i )> 

- - - - .

C4 -- < G >~

Fo r exam p le ,

=

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - 3- 3 -d r1 d

rl (4.14)

The series in Eqs. (4.5) and (4.13) can be expanded diagrammatically as

F 0 r 0

• ~~~~~~~~~+ . . . (4.l5a)
r r r 0

One of the most significant attributes of this method is its systematic

and exp li c it ac coun t of mul tip le scat ter i ng . For exam p le , the th ird

term represents a wave excited at the origin; it travels freel y to and

s ca tters at the vertex r1, tr ave l s  freel y to and sca tters a t the

vertex r2, then travels freely to r. Avera ging Eq. (4.l5a) and

40
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because n1 ) is a centered gaussian random field , the following

dia grammatic series is obtained [Tatarskii , 1971 ]:

- ________ + 
_ _ _ _ _ _ _ _

+ ,e s
1 +I . p p S S p

_ _ _ — S S S

+ 
~

‘ 

~~~~ 
\ + . . . (4.l5b)

This series is selectively summed by substituting the zeroth term in

Eq. (4.lOc) in Eq. (4.11), and (4.11) then s mp lifies to the following

diagramma tic equation in <G a>:

= + / \~~ (4.16)

On iteration ,

- = 
________ 

+ 
___________

~ __V•~

• * • S .—r I •• e • - - 4 —.-—---

+ . . . (4.17)

Us i ng these equations , the coherence len gth of acoustic-wave propagation

is computed in the next section , where the ccndition of forward scatter ,

Xa ~ L0(x), exists ( because the correlation length of the refractive-

i ndex fl uctua ti ons i s on the order of L0( x ) ) .

3. Cohe rence Length of Propa gation

An anal ytic representation of Eq. (4.16) is

41
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -V~ ••~ ~1~~

<G (r ,O)> = G ( ~ ,O) + ~~~~~~~~~~~~~~~~~~~~~~~~
Vs Vs

. <n (~~
)n(

~~)><
G (

~~~O)>

3— 3—d r1d r2 ~4.18)

Using the principle of stationary phase [Popoulis, 1968] and the mathe-

matics in Appen dix B, this equation can be solved for

= Gao (f ,O)e 2<t 1 (Y
~
t )I > (4.19)

Here , the unperturbe d term Gao (r ,O) is damped by the factor

exp[- <Ir~
Ji (x ,

~
7 )P 2

>/2] in a turbulent medium because of complex-

phase interference . From Eqs . (4.1), (4.19), and (A.2O), the coherence

length is

61 (11-6 m
54.8 (1.833 - m ) a

x = 

C 2 k~ A
513 

~~a 
(4.20)

A t altitudes of the acoustic pulse X X
c~ 

the effect of turbulence

is negligible. From Fig. 3, i t can be conc l u ded th a t the coherence

len gth varies inversely with frequency and the strength of turbulence.

The incoherence lengtn of propagation “

~~ 
isdefined as

6/(11-6 m
54.8(1.833 - m ) a

1 
= 

Cn~ 
k~~BS’3 X0

a 
(4.2
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500 I0~ 1O4
ACOUSTIC FREQUENCY

f0 (Hz)

Fig. 3. COHERENCE LENGTH VS
ACOUSTIC FREQUENCY .
Cn~ 

= 10 6rn 2”3, x0 1 m,
c0 

= 340 m/sec, and A = 2.

The incoherence len gth of propagation is the altitude over which the

transverse coherence length of the field is of the orde r of the inner

scale of turbulence . For x. ~ x , the acoust ic wave is incoherent

as a result of random fluctua tions in the atmosphere . This incoherence

length of propagation i s typi ca l l y  three to five orders of magnitu de

larger than the coherence len gth .

B . Second Moment of Acoustic —Wave~f~~paqation

The coherence func ti on M(i~’ ,F”) of an acoustic wave propagating

in a turbulent atmosphere is defined by

<Ga (r ’ ,0)G a(~
” ,0)> = GaoG~

’ ,O )G 0(~ ” ,O)Mi~
’ ,y t t )  (4.22)
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The quantity <Ga(r ’ ,O)Ga(r ” ,O)> is the second statistical moment of

Green ’s function. This function has been widely used when a measure

of coherence between two points in the same wavefront is required

[Tatarskii , 1971 ; Prokhorov et al., 1975 ; Fante , 1975]; however , the

definition and requirements in this investigation are more general

because r ’ and ~~
“ lie in the acoustic pulse. To compute M(r ’ ,r”),

the Bethe-Salpeter equation [Frisch, 1968] is solved using Feynman ’s

diagrammatic technique .

1 . Bethe-Salpeter Equation

The coherence funct ion is a measure of fl uctuations between

two points (not necessarily in the same plane). To compute M (~ ’ ,~ ”),

the second statistical moment of the acoustic wave must be determined.

T h is second moment , the ensemble average of the double Green ’ s func-

tion Ga(r
’ ,O)Ga ” ,O). This double Green ’ s funct i on i s def i ne d as

Ga(r ’ ,O) ® G~(r”,O) = Ga(r’ ,O ) G a (r ” ,O) (4.23)

that is , the tensor product of Green ’s function and its complex conju-

gate. In terms of “double diagrams ” and Eq. (4.15a), 

~~~~~~~--V —

Ga(r
’ ,O) ~ G~~~” ,O) = + +

- - a---—--

+ + . . . (4 .24)
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Each double diagram is the tensor product of the operator representing

the upper line and the comp lex conjugate of the operator representing

the lowe r line. For example ,

r
l ~ = (-2k 2) JfGao(r ,ri )n i (ri )Gao(r i, r~

)

— -V_:T Vs Vs~~
i c0

* — — — * — — 3— 3—
~~~~~~~~~~~~~~~~~~~~ 

d r1 d 
~i

(4.25)

The mean double Green ’ s function <Ga(r ’ ,O) 0 G;(Y~
”
~0)> 

is

expressed in the following diagrammatic series :

. . —

<G (r’ ,O) G (r ” ,O)> = + 

- 

+ + .

(4.26)

where

= 
~ l r0 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ~l ~
‘O 

s s

G 0i~~ 1 )G;0(~ 1 ,~~)d
3
~1 d~~1 (4.27)

In opera tor notation , <Ga ® G:> 
can be computed from the following

Bethe-Salpeter equation [Frisch , 1968]:

<Ga 0 G:> 
= <Ga><G:> + < G a><G:>I<Ga 0 G:> (4.28)
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where is the “intens i ty operator ” because it is use d i n calcula ti ng
the mean intensity of the propagating wave . Under a weak forward-

scatterin g condition , the diagramma tic representation of this equation

is

<Ga 0 G*> = + s <Ga 0 G >  (4.29)

The top line denotes <Ga> and the bottom one designates

Th is diagrammatic equation can be solved by iteration as follows :

<Ga 0 Ga > = + I +

+ + . . .  (4.30)

which i s the “ ladder ” app rox imat i on of the solu tion to the Bethe-
Sal peter equation [Tatarskii , 1971] . The Eq. (4.29) can be rewritten as

<Ga(~
’ ,o)G;(P’,O)>

= <Gaft’ ,O)> <G;ft’,O)>

+ (-2k~)
2 f f  <Ga(P~~ i )> <G:(~

” ,
~2)><n 1 (~ i )n 1 (~2)>

Vs Vs

<G (~ l ,O)G *(~2,0)> d~~l
d~~ (4.31)

Normal izing this equation by Gao (r’ ,O)G o(~
” ,0) and using Eq. (4.22),

- ~~~~~~~~~~~~~~~~~~~~~~~~~~
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I’1(r’ ,r”)

= 
<Ga(i~

’,O)> <G:(?,O)>

Gao(r’ ,O)Gao(r ” ,O)

+ (_2k~)
2 f f  <Ga(:i ,~i )><G

*(?;~2)> 
<n1 fr1

)n
1 (~ 2)>

Gao(~l ,0)G 0(~2,0)M(~1 ,~2)d~~1 d~~2 (4.32)

- which, used to solve for M(i~’ ,r”) through Eqs. (4.19), (A.l6),

(A.l7), and (A.2O) becomes

- 

P1(~~ ,~ ” ) = ex~~
{
~ ~ [ < I ~1 f r ’n 2

> +

- 
- 2<~l (~

’)
~~
(
~’)>] } (4.33a) - :

Here , ~~
‘ = (x’ ,~’), ?‘ = (x” ,~~), and

~ [ <~~ ‘ )1 2> + <I~ l (~
h 1 ) I 2> -2<~i (r ’)

~~
(r”)>] =

- 

4~2 k~ f f  [i - Jo(KY a fl)] K ~~(fl,K )dK dn (4.33b)

where 
-

- 
x (x’ + x”)/2. and 

~
‘cim 

= -

2. Coherence Function

The coherence function is a measure of the sphericity of the

acoustic wavefronts propagatin g vertically into the turbulent atmosphere ;

L___
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it also determines the coherency in and between the wavefronts of an

acoustic pulse. This function is examined in the following cases .

Case 1: x << Xc

At these altitudes , the acoustic wdvefron ts are almost coher-

ent ,
M(r ’ ,~~

“) 1 (4.34)

and the effect of turbulence is negligible.

Case 2: x << x << x
~

In this case , Eq. (4.33a) is evaluated using the following

relation [Abramowitz and Stegun , 1968; Formula 11.4.18]:

f  [1 - J0(t)] t
813 dt = 1 .118 (4.35)

Based on Eqs. (2.23) and (4.33), the coherence function is

= exp [3.73 
(li;:

~~~
ma) (Y ~r n )

S/3 
(x )

(ll /6-m a
)] (4.36) 

-
:

whi ch holds  for -
~~ (x) << y <—~ t~ (x). As can be seen in Fi g. 4, the
0 0

coherence function decreases as X/X
c 

and 
~~~~~~ 

i ncrease , and

it i ncreases as ma i ncreases .
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Case 3: x.~ 
<< x

At these altitudes , < .~~(x); as a resul t K
a 

iS

integrated from 0 to s~~~~(f l) ,  and J0(K~y~~n/x) is expanded in a

small -ar gument approximation as 1 - (KaY~m
fl/x)2/4 in the ri gh t-hand

side of Eq. (4.33b). Using this expansion and Eqs. (2.23), (4.21), and

(4.33) the coherence function is

/11 - 6m \ / \2 / ~(l1/ 6-m )]
M(~ ’ ,

~~
“)  = exp -2.5 

~l 7  - 6m:
) 

~~~~~ 
I,_
-
~~ - )  

j  
(4.37)

C. Summa~~

Feynman ’s diagrammatic technique has been used to describe mathe-

ma ti call y the coherency of spher ical acous tic waves travel i ng ver tically

into the turbulent atmosphere . If a RASS is operating at an acoustic

frequency of f8 = 1 kHz, [Brown and Keeler , 1975; Taylor , 1968]

c 2 
= io 6 m 2’~

’3, x0 
= 1 m , c0 = 340 rn/sec. A = 2, and ma 

= 1.33 ,

the coherence length can be computed via Eq. (4.20) to obtain

xc 
= 6.4 x 108 m. This resul t implies tha t the coherenc y of an

acoustic wave is not affected by turbulence at x << xc when the

acoust i c frequenc i es are below a few k i locycles under typi cal atmo s-

pheric con ditions .
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Chapter V

SCATTERING OF ELECTROMAGNETIC WAVES FROM AN ACOUSTIC PULSE

This chapter describes the scattering of electromagnetic waves from

an acoustic pulse travel i ng vertically into the lowe r atmos phere .

Marshall [1972] studied this phenomenon in a static atmosphere (without

turbulence or winds ). The effects of turbulence , mean w i nd , an d tem pera-

ture parameters are included to obtain a more realistic expression for

the electromagnetic power reflected from an acoustic pulse. The funda-

men tals of the physical phenomenon are d iscusse d i n Sect ion A , and an

ex p ress i on for  the backsca ttered elec troma gnet i c ener gy for a monos tat i c

RASS is derived. In Sections B and C , the effec ts of tu r bulence  and

mean atmos pher i c  parameters on the backsca ttered ener gy are cons id ere d ,

and Section 0 summarizes the results. V

A. Interac tion between Electromagnetic and Acoustic Waves

A physical basis for the scattering of electromagnetic energy from

an acoust i c pulse i s es tab li she d i n this section .

1 . Maxwel 1 ’ s Ec~u at i ons

The electromagnetic refractive index ne(r) of the medium is

defined by

n(~) = 1 + n l (r) (5.1)

w here ne1 (~ ) is its varying part; typically , ne 1(~ ) << 1. The vari-

ations in ne(F) can be caused by natu rally occurring phenomena in the

atmosphere or they may be man .-made .
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Assumi ng that the l ower atmosphere is nonionized and that its

pe rmeab i l i t y 
~~~~ 

is a constant , the electroma gnetic refractive index is

= ~
/
~ kVV~I (5.2)

where

= + L~e(r) (5.3)

Here , the free-space permittivity c~ i s a constan t, an d i~c(r) is the

dev i ation of permitt i v i ty c ( r )  of the medi um from c . G i ven a
-iw t °

sinusoidal time -varying electric f ield E(r )e e and a magnetic f ield
-iw t

H(r)e e 
, Maxwell ’s equations can be expressed (using vector notation)

as
V x ( )  = ill oweH(t’) (5.4a)

V x H(~) = _ l W
e (5.4b)

V H(r) = 0 (5.4c)

V . [E(r)r(r)] = 0 (5.4d)

where

w = 2~f (5.5)e e

is the angular electroma gnetic frequency and is the electromagnetic

frequency. The above equat ions can be comb i ned as

V2E(r) + w c ( ~~)E(~ ) + v[~~~) 
. V(lnc (r))] = 0 (5.6a)

The gradient term can be neglected if Ac (r)/c0 is small ove r one

waveleng th X e [Bremmer, 1 964]. This is a valid simplification because
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this term , which contributes to the depolarization of the electromag-

neti c wave , is negligible under the atmospheric conditions [Strohbehn ,

1971] pertinent to this study . Neglecting the gradient and applying

Eq. (5.3),

v2~(~) + = 
~~~~~~~~~~~ (5.6 b)

Using k~ = w~p~~0, where ke 
= 

~~~~ 
is the electromaqnetic wave-

num ber , the above equation s i mpli fies to

V2E( r) + k~~(~) = -k~ (
~ c~(~)) ~~C~~

) (5.7)

which can be solve d in a perturbat ion ser ies because i~cCF)/c0 I ‘-~ 1.

2. Perturbation of Permittivity of Air Py a Prqpagating_Sound Wave

Neglect ing the effect of water vapor [Bean and Dutton , 1968],

the elec tromagne ti c refractive i ndex above 30 MHz can be approx ima ted by

K P
(ne - 1) = —v— (5.8)

where p ressure P is in Nw/rn2, tempera ture I is i n °K , an d K

i s a cons tant equa l to 77 .7 x 1 O
_8 oK/Nw/m 2. Equations (5.2) and

— (5.3) yield

(c- c)
(ne - 1) = 

2c0 
(5.9)

therefore ,

53

—-—--V -V — -- VT~~~~”~~~~ -V~~ -V -- - -~~ --V ~~~~~~~~~~~~~ ~~~~—-~ ---.- — 
- ......_..

~~_ ......... ..~_ i i4l 

- 
-



.-V— -
~~~~~~~~~~~~~~~~~~ 

.

~~

--- -

~ 

-- - V—..-------V

dc dP dT (5 10)c - c 0 P 1

Because the propagation of a sound wave is an ddiabatlc process in the

l ower troposphere ,

dV
= -y (5.11)

where 
~

— is the ratio of specific heats ‘t ai r and V d is its volume

density . Using the above equation and th~ perfect gas equation

PV d/T = cons tant.

(5.12)

then

dc 2< re dP (5.13)

~ 
I

which , in incremental notation , is

2K
(5.14)

‘~ T

Defining

= 
~o + 

~a 
(5.15a)

where p0 is the static atmospheric pressure and p~ is the external

acoustic pressure , then

= 

~a 
(5.l5b)
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The ex ternal source i s assume d to have a s i nuso id al amplit ude va ri a tion

w ith a max i mum value of 
~arnax~ 

If 1
~a 

is the radiated acoustic

powe r (in watts), g~(e) is the gain function of the acousti c source ,

an d G as is the maximum value of 
~~~~~ 

then

= Gas f~(e) (5.16a)

and

~~~~ 
= 1 (5.16b)

According to Landau and Lifshitz [1959], the intensity 1 (r) at

distance r is

2p P g Ce )ama x - a a1(r) = 
2p c 

- 
2 (5.17)

0 0

Consequently combining Eqs. (5.15) and (5.17) yield

(
~~~
)

2 
= (2K

2
Pc )(P9) (5.18)

0 rnax iry l r

For the collowing typical values in the l ower troposphere ,

Kre = 77.7 ~ io
8 OK /Nw/rn2 p0 

= 1.23 Kg/rn3, c0 
= 330 m/sec,

T = 273 K , and y 1.4 ,

( ± ~i~
) 

lO~~ (5.19)
iry T

and 

~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- (-t ) = —ç~- (5.20)
max

- where , assuming g8( O ) Gas over the effec ti ve sca tter i n g vo l ume

= lO~~ ~ G (5.21)

- 
3. Born App rox imation

- Equation (5.7) can be written ~s

V2E(r) + k~E(~ ) ~
k26e 

(

~~~~L(J) E(~ ) (5.22)

for each cartesian component of E(r), where 6e i s a di mens ionless

dummy parameter denoting a measure of deviation of relative permittivity

from unity . The electric -field component E(r) can be expanded in

a power series of as

-
- E(r) = ~~ S~ E .(r) (5.23)

j=0

- wh i ch , when substitu ting into Eq. (5.22) and equating terms of the same

orde r in 6e’ results in

- V2E0 + k~E0 = 0 (5.24)

V2E1 + k~E1 + k~ (
~~

) ~ = 0 (5.25)

v2E + k2 E + k~ 
(

~~~~L~~~
-) 

E l = 0 (5.26)
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In the above set of equations , E1 produces only sin gle-scattering and

higher order terms yield multiple -scattering effects ; mth order

scattering is a result of ~~ rn > j > 0. A sufficient condition for

the validity of the above series is

1 
~~ k2 d2 < 12 e scv

max

where dscv is the diameter of the scattering vo l ume . If

1 t~cI 2 2 -

— — k d < < 12 c01 e scv
max

then ,

E(r) E0(r) + E1 (~ ) (5.27)

Th is is known as the Born approximation [Bremme r, 1964]. If P~ is

the transmi tted electromagnetic power (in watts), Gt i s the max imu m

gain of the electroma gnetic transm i tter , and is the free-space

impedance , then

— — 
i(k r— wt)

E0 (r) = E
00

(r) e e e (5.28)

where

P G

4-or2

Us i ng Green ’s function theory and imposing the radiation conditi on [Yeh

and L i u, 1972] the scattered field at the receiver for monostatic

geometry of the RASS is

L 
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E1 (0) = 
k2 j  e r l 

E0(~ ’) d~~’ (5.30)
V r

where Vas i s the sca tter ing volume .

4. Scatterin g Geometry

The electroma gnet i c si gnal scattere d from the acoust i c pulse
traveling in a turbulent atmosphere is computed for the RASS mono-

static geometry illustrated in Fig . 5. The half-powe r bean~ idths of

the acous tic source and the elec troma gnetic antenna are 0
~ 

and 0 ,

x

V

OS1
~~~~~~~~~~~~~~

/
Fi g. 5. RASS MONOSTATIC GEOMETRY .
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i __ i
respect i vely , and 0 is the minimum of each. The effective scattering

volume V
as is limited by two sp here s of radii R1 and R2 centered

at the ori gin and by a cone of vertical angle ~ . If nac is the

number of cycles in the acoustic pulse , then

R1 
- R2 

= nac Xa (5.31)

The maximum gains of the electromagnetic transmitting and

receivin g antennas are Gr and Gt, respectively. These antenna

patterns are

= Gr f~(e) (5.32a)

= 1 - (5.32b)

= Gt f~(e) (5.32c)

= 1 (5.32d)

Here gr(O)~ 
gt(0), and the acoustic source pattern ga(O) defined in

Eqs . (5.16) are considered to be substantially constant over Vas S as

is E
00
(r) from Eq . (5.29). These simplifying assumptions do not

sign ificantly affect the calculations because the variation in these

patterns and amplitude over Vas is small . If the effective area of

the receiving antenna is A r and the receive d power i s

A
2

A r ~~ 
Gr (5.33a)

and
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The di amete r of the scatterin g volume is

dscv 
= max RU, n A a} (5.34)

where R x is the height of the acoustic pulse. As a result, i t can

be noted from the previous subsection that the condition for the validity

of the Born approximation is

K1 k~xê
2/2 << 1 if dscv 

= x0

K1 k~
n
~c

A
~
/(2x) <-~ 1 if d5~~ 

= n ac X a

These conditions are typically valid in the lower troposphere .

B. Received Power in the Presepc~_ pfjurbulence

In comput ing the scattere d elec troma gnetic ener gy from an acous tic

pulse in a turbulent atmosphere , the mean atmo spher ic parameters are

assumed to be absent. The effec t of these mean parameters , however , is

consi dered in the next section . From the results obtained in Eqs.

(3.32) and (5.20)

_____ = Re ~e
L ar (

~~~~0~~
f l
} (5.35)r

Based on this equation plus (4.22), (4.33a), (5.28), and (5.30) and

imposing the Bragg condition 2ke 
= ka s
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< 1E 1 1 2> = (K
2

)( k
2

)

2 

( r r u) 2 ~~~~~~~~~~~~~~~~~ 
(5.36)

where ~~
‘ = (x ’ ,~~) and i”  = (x ” ,~~). Making the transformation of

variables x = (x’+x”)/2, y = ( v - ) ,  and = (y ’+y~)/2,

and neglecting amplitude variations ,which are less si gnifi can t com-

pared to phase variations ,

<t E ll
2

> 
= (

~
) (~~)

2

(n ac Xa)
2 
~~~ I(x , §/2, 

~~~ 
(5.37)

where

I(x , ~/2, y )  = JJM (x. 
~am~ 

d2~~d
2
~~ (5.38)

D ’ D”

In the above equation D’ and D” are circles of radii d~ = x ’ 0/2

and d~ = x” 0/2, respectively; and ~~~~~~~~~~ is evaluated in

Appendix C. Using Eqs. (5.21), (5.29), (5.33), and (5.37), the received

power 1
~r ~

= 
n
~c

PaPtGrGtGas I(x , ~/2, ~ m~ 
io~~

5 (5.39)
r 256 x

Defining da 
= x 0/2, the received power 

~r 
is evaluated for the

follow ing three cases .
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Case 1: x << xc
At this altitude , the acoustic wavefronts are almost fully coher-

ent; therefore , from Eqs. (4.34), (5.39), and (C.9)

I(x, §/2, y )  (1rd~)2

[ ( ~~)2]2 (5.40)

and

- 
1r2na~

PaPtGrGtGas [(
~
/2)2/2]2 /l0~~2 \ 64x

= ~~c
PaPtGrGtGas [(~‘~~~](1.s4 ~ io~~ (5.41)

Th is equation is identical to the one deri ved by Marshall [1972] who

assumed a static environment. At these altitudes , his derivations are

val id even in the presence of atmospheric turbulence .

Case 2: x
~ 

<< x << x~

In this range , A a (x
~ 

0/2 , 
~~~ 

can be approximated by -rr d~ in

the integrand of Eq. (C.9); then ,

2d

I(x , §/2, 
~am~ 

= (2~ )(~d~)f amM~~~Yam~~~ m (5.42)

Because , generally, 2d8 > - .~0(x), the upper limit of this integral

can be extended to infinity . Based on Eq. (4.36),

_____ - 
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/ 8/3 - m ~6/5
I(x , 0/2 , 

~
‘c~m~ 

= (27r)(-ffd2)(O.1l3) I~ll/6 - m:) 
~t~~(x)

/ x \(ll/6_m a)(6/5)

~~~~~~~ 

(5 .43)

and

I(x , §/2, 
~
‘c~m~ 

= (-rrd~)
2 

(5.44)
max

As a result ,

I(x, §/2, y m~ 
/8/3 - m ~~~~~ (x)\2

I(x , §/2, 
~
‘oIm~ 

= o
~

226
~

i-V i~
-V,’5 - m )  ~ d )

max

~ ~
(ll-6m )/5

(—n 
(5.45)

~~ 
~rmax given by Eq. (5.41) is the maximum received power in the

absence of turbulence , then from Eqs. (5.39) and (5.45), it follows that

P 
= 

I(x , 0/ 2,

~rmax I(x , §/2, -
~c~m~max

/_8/3 -

= 0.226 
k~

l/6 - ma) k da I
x \

(ll_ 6m
a)/5

.(s,) (5.46)

from which it can be observed (Fig. 6) that the received power decreases

as altitude increases .

63

--- -V--- -
~~



_ _ _ _ _ _ _ _ _ _ _  -V-V- V.-~- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _

Nx~~l41O m

ALTITUDE ~ (km)

Fig. 6. NORMALIZED RECEIVED POWER VS ALTITUDE OF ACOUSTIC
PULSE. C~0 = l0 6 rn~~

I3 , x0 = 1 m , c = 340 m/sec ,
= i04 Hz , A = 2, El = 0.1 rad , x <-cz 0 x<< x~.

Case 3: x .~ << x

A t these altitudes , it can be shown by using Eqs. (4.37), (5.39),

(C.8) and (C.9) that

P 17 - 6m ~ (x)\
2/x.\(1l/6~~a

)

~~max 
= o.4(-f~

__
J :)(_-V~j__)~_i) (5.47)

It can be conclude d from the resul ts obta ined for the three cas es

conside red above that , in the l ower troposphere Cx ~ 10 km), the

effect of turbulence on the received RE power in a RASS is negligible

at acous tic frequencies less than a few kilohertz. At frequencies

greater than ~ 10 kHz, however , turbulence must be considered when

evalua ting the RASS performance when the altitude of the acoustic pulse

is greater than about 1 km .
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C . Interaction between Electromagnetic and Acoustic Waves in the
Presence of r-lean Atmospheri c Parameters

In addition to the fluctuating parameters , the atmo sphere i s

characterize d by such mean paramete rs as temperature and winds. In

the lower atmos phere , a linear temperature p rofile can be observe d at

he ig hts up to the first 10 km; its temperature grad ient, ty p i c a l l y

-6.5 °K/km [Yeh and Liu , 1972], tends to dis perse the acous ti c wave

train. The atmosphere is also characterized by vertical winds that

al ter the effective veloc i ty of soun d and by hor i zontal w i nds that shift

the focus of electroma gnet i c energy from its ori gi n. In the anal ys i s to

follow , these w i nds are assum ed to be constant , and each parameter i s

studied separately.

1. Received Power in an Atmosphere v~ith a Linea~-jem erature
Pro fiTe

The li near temperature p rofile i n the lower atmos phere can

be described as

T(r)  = T ’ + agr (5.48)

where ag i s the tem pera ture gra di en t, T ’ i s the tem perature  at

ground , an d 1(r) is the temperature at r. The beamwid th of the

acoust i c source is assume d to be suff i cientl y narrow so tha t the

temperature variations across the acoustic wavefront can be neglected.

Th is is a valid assumption for acoustic-wave propagation in the tropo-

sphere [Yeh and Liu , 1972] and for bean~ii dths less than 1 radian. The

end point of the vector F falls within the half-power beamwidth of the

acoust ic source . Because a rI ~~< T’ at al tit udes below a fewg
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ki l ometers , 1’ will be replaced by the average temperature T0 in the

ensu i ng calcula tions .

From Tatarskii [1971] and Eqs. (3.24), (3.25) and (5.48), the

phase 5T~
-o
~ 

of the acoustic wave is given by

ST(r) = kar 
- ~r2 

(5 .49 a)

where

a k
1~1 = —

~
4--
~ 

(5.4gb)

In the geometry in Fig. 5 (page 58), the strength of the RASS rece i ve d

si gnal  i s pro port i onal to the magn it ude of F , where

R -1 -1 (2k r-cz)
F =f cos ST(r) e 

e dr (5.50)
R2

and ~ i s a constant introduce d to s impli fy the calc ulat ions of Fl 2
.

In the absence of temperature gradi ents ,

n A 2

Ft
2 
= (_~~

_~a) (5.51)

For a l i near temperature p ro fi le i n the l ower atmosphere , F calcula ted

in Appendix D is

F = cos(fl R2+~ )[C f ( A )  - Cf(Bm )]

+ sin (flR2+ct)[Sf(A ) - Sf(Bm )]
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+ cos( nR2- i)[Cf ( A )  - C f(B )]

+ sin (flR2-~ )[Sf (A ) - Sf(B )]

+ i [cos (nR 2+~)[-S f (A ) + Sf(B )]

+ sin (flR2+cx)[Cf(A m
) - Cf(Bm )]

+ cos (flR~~~)[Sf(A~ ) - Sf(B~ )]

- 5if l (f l R~-a)[C f (A~) - Cf(B~)] 
] 

(5.52)

w here Cf(S). Sf(S) are Fresnel cosine and sine integrals , the nor-

mal i ze d temperature gra di ent ~ is defined as

(5.53)

and
R.,

R~ = 
~~~

- (5.54a)
a

p
2R~ 

= -
~~

— (5.54b)
a

2X
A = v~ R~ - ~~~~ (~~ 

- (5.55a)m 
/~~~~\ 

~~~~~
/

/ 2~B = /~ R~ - ~~~~ çl 
- --

~

-

~
-) (5.55b)

A~ = /~~ 
R~ - --

~~
- 
(1 + a)  (5.55c)

B~ = /~~ R~ - —
~~
-- 

(1 + -V

~~

_

~~~) 

(5.55d)

67

_____________ -V 
-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -.  .- -. —~~~~~..--—.- ~.
---.-- -.--~~ --. ~~~~~~~~~~~~~~~~~~~~~~~~~ — r--r ~~ ‘‘

R = 
f?

—~-~ 
(1 

- 

2A
a) (5.56a)

R~ = ~~
i

~-VQ (
~ 

+ (5.56b)

2A 2

nR~~=~~~~(l 
_ -

~
--
~
) (5.56c)

2X 2

nR~ = c-V (l + -~—~) (5.56d)

Defining the power- reflection coefficient to be l F l
2/(n ac Aa/2)

2,

it can be observed that a match between the electromagnetic and acoustic

wavelengths depends on the temperature difference over the length of the

acoustic wave train. For an acoustic pulse at an altitude x, the

reflection of electromagnetic energy is maximized when

A a x
~~~ 2(1 +

~~
) (5.57)

This represents a modifie d P ~g ~ itter condition when a RASS is operat-

ir i g in the presence of a linear temperature profile. For 8~ << 1 ,

under modified Bragg—scatter condition and small wave- train lengths , the

power-reflection coefficient is almost unity . It can be seen in Fig. 7

that the wavelength ratios that produce a peak in the power -reflection

coefficient for posit ive and negative temperature gradients are differ-

-nt; this can also be observed in Eq. (5.57). The conclusion drawn from

these results is that, -~r short wave—train lengths and wavelengths

below a few met er—,, typi cal temperature gradients in the l ower atmos-

phere have a negligible effect on the received power of a RASS.
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x~/X~ RATIO OF ELECTROMAGNETIC TO ACOUSTIC WAVELENGTH

a. Negat ive temperature gradient

Og 
)~~~

— -0.00005

.8 2.0 22 2 .4
RATIO OF ELECTROMAGNETI C TO ACOUSTIC W~~ELENGTH

b. Positive temperature gradient

Fi g. 7. EFFECT OF LINEAR TEMPERATURE PROFILE ON
POWER-REFLECTION COEFFICIENT VS WAVELEN GTH RATIO ;
altitude = 1000 Xa~ 

pulse length = 40
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2. Received Power in an Atmosphere wi th a Linear Temperature
Profile and Mean Ver tical W i nd

In the presence of a linear temperature profile described by

Eq. (5.48) and a cnnstant mean vertical wind <wi,>, the phase of an

acous ti c wave p ropagati ng i n the lower tropos phere can be determi ned

from Eqs. (3.24), (3.25) and (5.4gb). This phase is

S
~
(
~
) = ka

r (1 
- ~~~~~~~~~~~~~~~~ 

- ~r2 (5.58)

In the geometry in Fig. 5 (page 58), the stren g th of the RASS receive d

sig nal is proportional to the ma gni tude of 
~~ 

where

-i(2k r-c~)
F
~ =f cos S (r) e e dr (5.59)

R2

and o. is a constant. In the absence of temperature gradients and winds ,

lF
~~l

2 
= 
(

f l A

) 
(5.60)

Def i nin g <Wx>
= —— -—— 

- (5.61 )
v

then , F can be calculated as in Appendix D,

F =~
1
~Tic0s(n1R2

v + (1)[Cf( A )  - Cf(B )]

+ sin(flR
~~

+ c
~
)[S f(A mv ) - Sf(B )]
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+ cos (flR~ -a)[Cf~~ ) - Cf(B )]

+ sin (flR2 ~c~)[Sf(A ) - Sf(B )]

+ i[cos(nR
2 +a)[-S (A ) + Sf(B )]

+ sin (flR2 +~)[Cf(A ) - Cf(B )]

+ C0 5( f lR
2 

-~ )[S f(A ) - Sf(B v )]

- sin(nR 2 -a)[Cf (A ) - Cf(B pv)]] ~ (5.62)

where

(5.63a)

B = 
~~~~ R ’ - 

~~~~~ (1 - - x  - (5.63b)my 2 v

Apv 
= v~~~ R~ - —~~(l - + (5.63c)

Bpv 
= /~ R~ - ~?- (l - - -

~~ 

+ (5.63d )

R = 
~~~~ (i - - (5.64a)

Rpy - L v + ~~1~~) (5.64b)

nR 2 = 
~~~~~ (i - 

~~~~

- 

2~~
)

2 
(5.64c)

2A 2
= 

~~~~~ (i - + (5.64d)
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Figure 8 illustra tes the power-reflection coefficient defined by

l F l
2
/(n A /2)2 as a func tion of Xe/X a whose shape is determined

by the temperature gradient. The optima l ratio of Ae/X a~ 
howe ver ,

is obtained by the temperature gradient , altitude of the acoustic

pulse , mean tempera ture T0, and normali zed mean vertical wind

The modified Bragg-scatter condition is

On X~j
— - 0.00005

<w x )
I I _~j_ _ _ _  I L .
1.8 2.0 2.2 2.4 2.6 28 0.10

I I I I 0051.6 18 2.0 2.2 2.4 2.6 -

______________ l _ _~I~ _ 0 02L6 1.8 2.0 2.2 2.4 -

I I — I _ _ V V _ _  I__ -V~ I 00116 1.8 2.0 2.2 2.4 -

_____ -V.- - I ~~ I 0.001.6 1.8 2.0 2.2 2.4

I ~~~~~~~~~ I
1.6 lB 2.0 2.2 2.4 -

I !_ . I J _~~~~ J _ 002
1.6 1.8 2.0 2.2 2.4 -

I L_ _ ___ I — - I -005
1.6 1.8 2.0 2.2 -

I I I __ I 1 .0 10
1.4 1.6 1.8 2.0 2.2 -

RATIO OF ELECTROMAGNETIC TO ACOUSTIC WAVELENGTH

Fi g. 8. EFFECT OF LINEAR TEMPERATURE PROFILE AND
VERTICAL WIND ON POWER-REFLECTION COEFFICIENT VS
WAVELENGTH RATIO: Al titude = 1 000 A , pulse
length = 40 Aa~ 

a
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~~~~~~~~~~~~~~~~

+
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(5.65)

X a c0 2T0

When <wx>/co 
= ~a9

x/(2T0), then Xe = 2X a which is a con diti on fo r

the maximum return of electromagnetic energy in a static atmosphere .

It can be conclu ded, as in the previous subsection, that the loss in

received elec tromagnetic power is negligible in the presence of tempera-

ture gradients and mean vertical winds .

3. Received Power in the Presence of Horizontal Winds

Horizontal winds displace the acoustic wavefront laterally.

This results in a shifting of the focus of reflected electromagnetic

ener gy from i ts or igi n , there by r e s u l t i n g in  a decrease i n the rece i ve d

si gnal level when a monostatic RASS is used. The effect of constant

mean horizontal winds Wh is inves tigated as follows .

Cons id er an electroma gnetic wavefron t i nteract i ng w i th an

acoust ic wavefront. The phase-matching error between the two wavefronts

is illustrated in Fig. 9. The error between paths P and P with

angular separation 0 is 2(R—R’), where if and ~~~
‘ are the ve ctors

corresponding to the two paths. The factor 2 is the result of the

forward and reverse travel of electromagnetic energy . Because the phase -

match error is small  for smal l  0, the electromagnetic energies from

P and P add nearly in phase at the rece iver located at the origin

of the coordinate system. If P is fixed and e is increased , the

phase -match error will become larger , an d this wil l  increase the phase

di fference i n the electromagne ti c ener g ies reflecte d from the two paths .

When this error i s hal f of an electr i cal wavelen g th , the ener gi es w i l l
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ELECTROMAGNETtC SPHER!CAL ACOUSTIC
WAVEFRONT

\ _______ 

WAVEF F~0NT
_

MATCH ERROR : \ CONSTANT2(R-R) HOR~~~~ TAL WIND

e~UT v r~TUAL ACOUSTICV / SOURCE

T, R, S

DISPLACE ME NT

Fig. 9. SHIFT OF ACOUSTIC WAVEFRONT S IN THE PRESENCE OF
HORIZONTAL WINDS . T - Radar Transmitter , R - Radar
Receiver , S - Acoustic Source.

cancel . If 0 is further increased this error may become a full

elec tr i cal wavelen gth and the energies w i l l  add construct ively.

From th i s di scussion , it can be concluded that a smaller bealuwidth e

reduces the susceptibili ty of reflected electromagnetic energy to

horizontal winds .

Each acoustic wavefron t in an acoustic pulse I orltributes a

phase-match error . This erro r is substantially constant uv~— r In

acoustic pulse containing a few tens of cycles for typic ~1 values of

beamwidths and hori zontal wind velocities; however , the ali~i n ’ - vn t

between electromagnetic and acoustic wavefronts is important.

From Tatarsk ii [1971], and Eqs. (3.24) and (3.25), the phase

S (F) of the acoustic wave is

L _ _ _  _ _ _ _ _  
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Sw(~
) = kar (l 

- <~ > . (5 .66)

where ~ = ~/r and is the mean wind vector. For the geometry

in Fig. 5 (page 58), the magnitude of the RASS received signal is pro-

port ional to 
~~ 

where

— 
-i(2k r’-a) ~~F = f cos S

w
(r ’) e 

e d r ’ (5.67)

Vas

and ~ is a constant. In the absence of horizontal winds W
h~ 

the

max i mum value of F
~ 

is

Fwmax = ltX 2
fl ~ (

~~)2 1 
(5.68)

where x is the height of the acoustic pulse. Note that , for x >>

an d wh/c << 1 , the acoustic wavefronts shift laterally through

kaxw h/co radians in the presence of horizontal winds. The effects of

hor i zontal win ds on the receive d power are neglig ible when

kaxw h/cO 
<< 1; in  th is case , Fw Fwmax~ When k x Ow h/c 

>> 1 and

= 2X a~ 
then from Eq. (E.15) in Appendix E, for smal l  pulse  len gth ,

P 20 .37 cos 2[k xOwh/(2c ) — 311/4]rw 
= a (5.69)

rmax (kaXÔWh/Co)

Here ~~ and 
~rmax are the power received in the presence of hori-

zontal winds and in a static atmosphere , respectively. The funct i onal

behavior of Eq. (5.69) is illustrated in Fig. 10.
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Fi g. 10. ASYMPTOTIC NORMALIZED RECEIVED POWER VS
NORMALIZED ALTITUDE FOR ACOUST iC PULSE ALTITUDES
LESS THAN COHERENCE LENGTH IN THE PRESENC E OF
CONSTANT HORIZONTAL WINDS . ~ = 0.5 rad.

If x = 200 A a~ 
w h/c o 

= 0.01 , and U = 0.5 rad , then 
~rw~~rn,ax

4 x lO
_ 2

. When A a = 4 m and c0 
= 340 rn / s . then = 85 Hz which

is the operating frequency of the Stanford RASS [Frankel and Peterson ,

1976]; the loss in received power as a result of horizontal winds at

an altitude of 800 m is 
~rw’~~ma ~ x 10 2. If the operating

acoust ic frequency is the only parameter changed to f = 1 kHz
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an d if the beamwidth remains  constan t a t 0 = 0.5 ra d , then at

x = 200 X =68 m , P /P ~~4 x l 0 2.a rw rmax

The above decrease in the receive d si gnal leve l resul ts because

horizon tal w i nds shi ft the focal point of the reflec ted elec troma gne ti c

energy from the origin , an d this sh i ft is a measure of the hor i zon tal

wind. Applying the principle of specular reflection (Fig. 11), a

b is ta t ic  radar confi guration with space—dive rsif ied receiving antennas

can be used to col lect this reflected energy [Frankel et a l . ,  1977 ]

and measure hor i zontal winds .

x
ACOUSTIC WAVEFRONT ACOUSTIC WAVEFRONT
IN ABSENCE OF --~~~~ ~~~~~~~ . IN PRESENCE OF
HOR. WINDS HOR . W iNDS

INCIDENT RF REFLECTED RF
ENERGY ENERGY

CONSTANT
HOR . WIND 

R1

~~~~~~~~~~

l~—• 2~~
— X ---~~

Fig. 11. SPECULAR REFLECTION OF ELECTROMA GNETIC ENER GY FROM
ACOUSTIC WAVEFRON T. I - radar transmitter , R - radar receiver
at the origin , R1 - displaced receiver , S - acous tic source ,
x - alt i tude of the acoust ic wavefront.
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D . Summary

Scatter i ng of electromagnet i c waves from an acous ti c pulse

traveling in a realistic atmosphere has been considered. The effects

of such atmos pher i c parame ters as tur bulenc e an d mean w i n ds were con-

sidered independently. These phenomena can be combined to analyze

their effect on the scattering of electromagnetic waves ; however , the

basic physical i deas remain unchanged. The asymptotic results of the

different cases can be combined to obtain a composite view , but only at

the expense of clarity .

It has been concluded that turbulence has little influence on the

scattered electromagnetic energy of acoustic pulses with carrier fre-

quencies below a few kilocycles and at hei ghts up to a few kilometers .

Mean verti cal winds and temperature gradients are functions of altitude .

and their effects on the RASS signal can be minimiz ed by establishing

a modified Bragg-scatter condition.

Hor i zontal w i nds di sp lace the acous tic pulse downw i nd resul ti ng i n

received signal levels below those computed in Eq. (5.41). By using a

bistatic RASS configura tion , however , the princi ple of specular reflec-

tion of RF energy from the acoustic wavefronts can be applied to measure

horizonta l winds . In this R.ASS geometry , the radar antennas and acoustic

sources are aligned in the wind direction -- the transmi t antenna upwind

from the acoustic source and the receive antenna downwind. If the sepa-

ration between the antennas is much less than the altit ude of the acous-

tic pulse , the received signal level can be obtained from Eq. (5.41).
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Chapter V I

DOPPLER SHIFT IN THE REFLECTED ELECTROMA GNETIC SIGNAL

The electromagnetic ener gy reflec ted from a travel i ng acous ti c wave

train shifts from the frequency of the incident electromagnetic wave .

Th i s i s cal le d the dopp ler shift , and i t depends on atmos pher i c param-

eters and on the position of the acoustic wave train with respect to

the RASS geometry .

The infl uence of mean winds on the received doppler signal will be

discussed in Section A . In Section B , the dop p ler  s h i f t  for a b i sta ti c

RASS is described . Because deviation from unity in the acoustic refrac-

ti ve i ndex cause d by tur bulence is smaller than that resultin g from

typical mean wind fields in the troposphere (by at least one order of

magnitude ), the effect of turbulence is ignored in this chapter.

A. RASS D~ppler Measurements in the Presence of Mean Wind _ Field

In monos tatic geometry , the doppler shift in the received electro-

magnet ic signal Af (x) from an acoustic signal at an altitude x in

the absence of winds is

2 ~~~~~~~~— — 
~~O . I )

e

c(x)  = Kd [T ( x ) ] L~
2 (6.2)

where K d = 20.053 [North , 1974] and the speed of sound c(x) at x

is measured in meters per second. From Eqs. (6.1) and (6.2), the

temperature T(x) a~ x can be measured by determining t~f(x).

_ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _
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Because horizontal winds contribute negligible erro r in the comp u-

tation of T(x) for a monostatic R.ASS geometry , only vertical winds

wx need be consi dered. The doppler frequency in the presence of these

winds is

~f(x) = - ? [c(x) + W I  (6. 3)

Knowledge of and ~f(x) produces a correct indication of tempera-

ture . If vertical winds are i gnored , the error i n the cal cu la ti on of

T(x) is [North , 1974] approximately

AT (x ) 1.7 w ( 6 . 4 )

and this error becomes significant when the vertical wind is greater

than 1/2 rn/sec.

The functional error in the computation of the height of the acous-

ti c pu l se  w i l l  be on the or der of w
~
/c0. This error should also be

co rrecte d because i t becomes i nc reas i n gly significant as the magnitude

of the ver ti cal w i nd and the alt i tudes grow lar ger . It can be el i m i-

nated , however , by a suitable averaging process , one of which is

described b.y North 119741.

In the bistatic geometry of Fi g. 12 , the doppler shift f(x) in

the rece i ved electroma gnetic s ignal cau sed by the travel i ng acous ti c

signal is

Af(x) = - -f-- c(x) cos [~(x)] (6.5)
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c(x)

-‘--d0 ~
.- l- ~ d0—..-I

Fig. 12. DOPPLER -TRACKING BISTATIC
RASS GEOMETRY . T - transmitter ,
S - acoustic source , R - receiver ,
x - altitude of the acoustic wave-
front, da = TS = SR .

which differs from Eq. (6.1) because of the additional multiplicative

factor cos [a(x)], where

-1/2
I d~~\cos [c~(x ) ]  = (
\
l + 1-) (6.6)

and da i s the separa tion between the acoust i c source and the elec tro-

magnet i c transmitter or receiver . At an alt itu de x , the temperature

T(x) can be computed via Eqs. (6.2), (6.5) and (6.6). At x

cos [c~(x)] 1 and temperature can be determined froni Eqs. (E .1 ) and

(6.2).

In the presence of horizontal winds , W h~ 
the doppl e ’

the bistat ic RASS for small values of cz is g i ven by
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Af (x) - ~~~
- c’(x) cos [ci(x)J (b.7a )

where

c’(x) = c(x) cos + W h sin (6.7b)

In Eq. (6.7b) ah 
= wh/cO is typically much sitialler than unity .

Hence c’(x) c(x), and therefore it can be concluded thdt the effect

of hori zontal winds on the doppler shift in a bistatic RASS is insign if-

icant.

B. Averaged Doppler Shift of the RASS in a Bistat ic Con y ‘ 1ur~ition

A static atmosphere is assunied in this analysis. Thi- ‘ i stjtic

geometry of Fig. 12 is considered. As the acoustic pul ce spreads o~~~

a distance of flacA a in the vertical direction , the effective altitude

x of the acoustic pulse should correspond to the maximum intensity in

the doppler-frequency spectrum [Gill , 1965]. Note that x2 x~ xl ,

where x 1 and x2 are the heights of the upper and l ower’ edges ~ the

acoustic-pulse train. Beam power patterns of the electromagnetic trans-

mitter and receiver antennas determine x~. For examp le , i f  thi s

pattern has a gaussian varia tion , ~ will be close to the top of its

edge x1 at low altitudes of the acoustic pulse. At hi gher altitudes ,

however , variation in the beam power pattern over the spread of the

acoustic wave train in the vertical direction is negligible; therefore ,

x = (x1 + x2)/2.

If the doppler shift is obtained by an averaging measuremen t of

t.f(x) when the acoustic pulse occupies two different positions in the

vertical direction , then
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~ av~~ 
= - AeT~

(p p2 
C0S [cx (x ’)] dx ’ (6.8)

where heights x~1 and x~,2 indicate the maximum power return of

electromagnetic energy from the acoustic pulse at the two positions .

Note that x is any point between x~2 and x
1~ 

and that the speed

of sound c(x) is assumed to be constant over x~2 to X~ 1 • At high

altitudes , cos [a(x)J 1 and the averaged doppler shift can once

again be computed by Eq. (6.1). At low altitudes and for a finite

spread of the acoustic-wave train , however, Eq. (6.8) should be used.

Based on Eqs. (6.6) and (6.8), 
~~av~’~ 

can be simplified to

= - 

Ae p 2 ) I(~ 
+ x~i

)h12 - (d~ + XP2) j 
(6.9)

Consequently, the temperature at x can be computed from Eqs. (6.2) and

(6.9).
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Chapter VII

CONCLUSION

In this study, the interaction of electromagnetic and acoustic

waves in a stochastic atmosphere has been discussed for a monostatic

RASS geometry. Spectral expansions for the physical parameters

describing acoustic-wave propagation in a dissipative atmosphere were

developed from basic conservation equations. Using Rytov’s transforma-

tion and Feynman’s diagrammatic method , it has been theoretically demon-

strated that, for acoustic pul ses with carrier frequencies below

a few kilohertz and propagating under typical atmospheric conditions ,

turbulence has little effect on the strength of the backscattered RASS

radio si gnal at heights up to a few kilometers. This result implies

that focusing of radio-frequency energy by the acoustic wavefronts is

primarily a function of sound intensity which decreases as x~
2, where

x is the altitude .

The effect of mean vertical winds and temperature profiles on the

strength of the received signal was also shown to be insignificant.

Horizontal winds shift the focus of the reflected electromagnetic energy

from its origin, thereby resulting in a decrease in the received signal

level when a monostati c RASS is used. The principle of specular reflec-

tions , however, can be utilized in a bistatic radar configuration with

space-diversified receiving antennas to measure remotely the horizontal

wind component in the lowe r troposphere .

The doppler performance of the RASS has also been described. It has

been observed that the doppler shift is sensitive to the presence of

• winds , but this sensitivi ty can be eliminated by an averaging process.
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A modified expression for the doppler sh i f t  was also obtained for a

bistat ic RASS geometry , which takes into account the finite spread of

the acoustic pulse in the vertical di rection .

This research has been theoretica l in nature . The conclusions

draw n , however , need to be verif ied experimentally.
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Appendix A

SIMPLIFICATION OF

The coherency of a spherical acoustic wave propagating vertically

into the lower atmosphere can be described by its first and second

statistical moments. These moments, In turn, depend on the perturbation

- 

~ (~)] of its complex phase. Consequently, it can be observed

from Eq. (3.28) that, to compute these moments, it is necessary to

compute <ip )g,~(i ”)> . Therefore, 
<~~1

(~~’)gi (~~”)> is calculated

in this appendix for spherical wave propagation. From Eqs. (3.30) and

(3.31)

f 1k (r1—r) “~aV~ lI 
~= ~~ Jn 1~~1~~ 

a e 
~~~~~~~ 

d ‘l (A.l)

Vs

the covariance function of the acoustic refractive Index , is

B~(i~’,i~”) = 
<ni (~

’)n i (~
”)) (A.2)

Then

<~~1 (r ’)q, 1 (r ”) > (~~~~(r ’ r1’) e a fJBn
(
~i;~2

)

V5 V~

expEl ka { (r1_ r2)+I~ ’_
~1 I-I~”-~2I }

lr — r 1 I I r -r 2 1
r1d r2 A.3)
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where = (x1, 

~czl~ ~ ~ (x2, 
~~~ 

Under paraxial approximation

[Strohbehn , 1968), and forward scatter;

.2 .2
2 2 y y

<~i (~
’)’
~
’(
~
”)> (

~
.) x~x~

1 e a 
-

_____ _____ -

+ !~~.~
‘
~ti!..1 - 

Y l -
~~2’ ~~

- 
~~~~ (A.4)

The representation of r as a quadratic function of y~ ~s valid

only for small y
~
. But for larger va l ues of y .~ 

the integrand

oscillates rapidly. Hence the integration over coordinates has

been extended to infinity . The two dimensional spectral representation

of B~(~1~~2) in a locally homogeneous, isotropic atmosphere , w ith

smooth variations in vertical direction as in Eqs. (2.lOe), (2.13) and

(2.16) is

B~(~ 1~~2) =ffF (12
2. 

~1
-
~2~ 

~~~~~~~~~~~~~~~~ (A.5)

Substituting the above expansion in the expression for <‘Pl (~
’)
~
L i (~

”)>.
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2 .2 ~2

. 
(~~)x x e

1
~~[~~ 

-

F l ’  ,
f l \  2 1 2 p 

~ 
—
‘ 

~~~ 
( —

“x1x2(x
P _x

1 )(x
M _x

2) 1~x1, ~
‘
~~ ‘ 2 x2,y

dx2 dx 1 d~~0 (A . 6)
where

= ~~ xP[i
k {~
i + ~~ a114 ~i~~. J d

2
~ (A l)

12(x2,y”) = 
~ffexP[_

ik
a{~~~ 

+ !~ _~a2 ~ + ii~.;2J d
2

2 (A.8)

After some algebra,

2irix1(x ’-x1) 1k y’2 iK2x x
= ‘ ‘ exp a cx 

- cx 1 (x ’—x 1 ) —i~ ~~~
‘ 

~~~~
- (A. 9)cx X ’ka 2x’ 2kx ’ a a

—2irix2(x”-x2) 1k y”2 K
2x X

= 

X”ka 
exp - ______ + i

2~~~~~ (x h1 _x
2

)+i~ .
.~~~ ~~~~~ (A.lo)

Then,

x l Sb .,

= k~J/_[fF (l2’~2 XrX2. 
~c~)0 0 - c o

ex~ {;~~ ~~
4.(x ’_x l ) - ~~~

(X ” _X
2

)
~

-.



_ _ _  - . ~~~~~~~~~~~~~~~ —
~
- -—--..- 

-
- - - -. - - -

. ~~~~

- 

~ 
~~~~~ 

d~~ dx~dx1 (A.)%)

‘ + “ xl x2Let X x 
= x ; x ’ -x ” = óx ~ 2 • n ; x1-x2 

•

~ap 
= 

2 ~ ~
‘am = Y~-Y~ 

; F~(n~ RI , ~~) 0 for RI i
~
,

the outer scale of turbulence . ox is of the order of few A ;  its

maximum value being the nunter of cycles in the acoustic pulse times

Contributions to the expression in the above equation come from

lower values of ~ , also %Sx /x < 1. Hence terms that include

and Ox/x in the exponent will be neglected. Extending the limits of

integration on ~ to

x c o c o
= 2k~ffffF ~~~~ ~ )

00 - co

2
exp ox (

~
)
2 

- 

~‘~cz~~czm 
fl]d

2
~~d~dn (A.l2)

since f F(n~~ ~~)d~ =ir~~(n, ~ ) (A. 13)

= 21Tk~ cx~

K 2 2
exp -1~~--- Ox (~ ) - ~~~~~ ~~

- d2~~dn (A.14)

S i nce the turbulence is isotropic , and
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fexp
~
_iK

cxyam ~ do = 21TJ0(K Y 

~
) (A.l5)

where J0() is a Bessel function of first kind and zeroth order ,

then

= 4i~
2k~ f f K~1(fl , ~:) ex P [-i~~

_ 6 x  (fi
)]

J0(Kcz3’cim ~)dKcxdfl (A.l 6)

For a Kolmogorov spectrum, the exponent part of the integrand is almost

unity over the useful range of integrating variables for typica l

values of acoustic pulse length. As a result

= 4ii2k~ Jf K ~~~~ K )J0~~ Y ~~ K dfl (A.l7)
00

This equation is used in computing the coherence length and coherence

function of vertical acoustic wave propagation . Evaluation of

<l~i (x , ~~)I 2> is as follows . From Eq. (A.17),

<j~ 1 (x, ~~)l 2> = (2~ka)2fJK~~n (n, K )dK dfl (A.l8)

Using Eqs. (2.20) and (2.23),
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IT. 1
<I~ i (x, ;~

)I 2> (2~ a)2J J K~ 0.033 c~0(~~)
ma 

~~
1113d

~a
dfl (A.19) . J

0t~~(fl)

<~~l~~’ 
fl~
2) = (0.0365)C~Ok~A5/3(~~) a

(l
~~

h/6

) 

(A .20 )

92

-~~~~~~~~~~~~ 

A.



Appendix B

CONTRIBUTION OF DOUBLE-SCATTERING TERM TO THE MEAN GREEN’S FUNCTION
OF A SPHERICAL ACOUSTIC WAVE PROPAGATING IN A TURBULENT ATMOSPHERE

To compute the first statistical moment of the acoustic wave , It

is necessary to determ ine the contribution of the double-scatte ring

term in Eq. (4.17) to the mean of a spherical acoustic wave propagating

in a turbulent atmosphere . The second term in the diagrarnatic series

in Eq. (4.17) is defined as Gao(r,0) I(x,y ), and I(x,~~) is com-

puted in this appendix. The mathematics is the same as in A ppendix A .

and like al gebra follows in Eq. (4.18).

22
I(x ,~~) 

(-2k
) [f. <n1(~1 )n 1(~2)>

x2.~x1

1k { ? ~~-~~ + t r 2~
rl ! + ri - r}a 2 r ~~

— 3--
— — — d r1d r2 (B.l )

r-r 2~ ~“2 ”l l 
r1

Using the paraxial approximation

k B (r ,r )
I(x ,~~) = x (

~
) [jr 2

x2>x 1 ~~~~ 
X

2 
X 11 X

1

exp [ik a 
~ 

+ .L~~!i!4
2 

+ ~i~i ~ (]. d
~
rld

~
r2

(B. 2)

From Eqs. (2.l0e), (2.13) and (2.16)
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-; 
~~‘1 ’i2~ 2-Bn(

~ 1~
r
~2

) =
,/j

F ‘~ 2 
‘ “l~~2I’ 

)e ~ d (B.3)

Note that F depends on 1x 1 -x2L From Eqs. (B.2) and (B.3)

1(x,~~) = ~ (k;)
2 x x2

co F ( : ? I I

Ia(Xi~~
)d2;dx 1 dx2 (13.4)

where

I a(x,Y ) 
= ffffexP[k ~~2(x- x~ 

+ + -

- i~~ 
. (
~~l~~~2)] 

d2~~1 d2~~ (8.5)

Because

ffexP[i
k 

~ ~~~~~~~ 
+ - i~~~~ l]d

2
Y , =

[
~~~~

(
~~i

cl )]exp [~:~ 
- 

i x l (:2-x l ) 
- 1

~~t Yct2 ~J~] 
(B.6)

then ,

2nix 1 (x2-x 1 ) I y2 i v
2

X 1 (X
2

—X
1

)
I (x ,~~) [ x2k8 

]ex~ [-.ik~ ~ 
- 2kx 2

.
ffexP[ik 

2~ + ~~ 
~~~
- L~~~~2(-l + ~)] d2y 2 

= (B.7)
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F2~

ix i(x 2~l)1 
~~ ~k 

—
~~~ 

iK
~

xl(x 2
_ x
l) ] F2TTi x 2 (x _ x 2 )

L X2ka 
exp 

[
1 a 2x 

- 

2kaX2 J L

exp [ - - 1)

2 
-

~~~~ 
(X_ x2) 

- i::i(? - 1) 

~
] contd..

~ ( 
- 

- /2\2 xl (x~
x2)(x2-x l)

a x ,y ) - 
k’~a) 

x

.2r — — 
(x 2_x l ) i~ (x2

_ x
l )(1exp [iK~~Y x * 2k (x 2—x 1 ) 1 - - -----

~
--- ----

~
,j (B.8)

From Eqs. (8.4) and (B.8)

_ k~~J7’JJF~(l 2
2 , x~-x ~ ,

(x 2-x ) iv~ (x2-x 1 ) 1 2--exp [iK .Y - 

x 
1 - 

~~~~~~~ 
(x2-x 1 ) 1 - - 

~ ] d . d x 1 dx 2

(8.9)
xl +x2Let x2 - x 1 = 

~~; 2 
= r~ and as in App endix A ,

I(x ,~~) = -k~ ffJF~ (~~,~~,
T ) d2~ d~ d’ (8.10)

It then follows from Eq. (A.12) that

I(x ,~~) = - 
~~ (B. ll )

- 
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APPENDIX C

SIMPLIFICATION OF I(x , 0/2, y~~)

To determine the intensity of the RASS received signal , i t is

necessary to compute <1E 1 1 2> which is the ensemble average of 1E 1 1 2 .

This quantity is derived by the simplification of I(x, 0/2, y~~) in

Eq. (5.38).

I(x , ~/2, y~~) = ff M(x , 
~am~ 

d~~ d2 (C.l)

D’ 0’

0’ and D” are circles of radi i x ’~/2 and x”~/2, respectively.

Repeating for convenience , the definitions given in Chapter V ,

x = (x’ + x”)/2; 
~ctm 

= - ‘ ~ ap = 

~~ + i; )/2 (c.2)

d~ = x ’ 6/2; d” = x” 6/2; and da 
= x 6/2 (C.3)

1 y ~~d (C.4a)
W (y~) = 

ci a

0 y~ > da (C.4b)

the above integral can be written as

I ( x , 0/2 , 
~cim~ 

= f f w ( ~~) W(y ~) M(x , y )  d2 
~~~

‘ d2 ? (C.5 )

Making the change of variables to and results in

(~ -7 ~~~~~~~~~~ . .  _________

I. —
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I(x,6/2, 
~
‘am~ 

= fM(x~y~~) ~~~~~~~~~~~~~~ (C.6)

where

A (x ,6/2,y )  = 

~~~~ + ~
.
~‘i) w (~;~ - ~~~~ d

2
~~ (C.7)

This double integral , is the overlap area of two circles of radii

d’ and & . Since x ’ x” ; A(x ,6/2, 
~
‘am~ 

is evalua ted as in

Fried [1967]

1 1 2 2 1/2
1/2[4d 2 cos am~~

2da~ 
- 
~am

(4da~~ um)

A ( x,0/2, y )  = 2d~ (C.8)

y -2dO am a

The maximum value of the above expression is rid 2 .

is plotted in Fig. 13. From Eq. (C.6), I(x~0/2~y~~) does

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 13. THE OVERLAP INTEGRAL
VS y ni/(2d a)
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not depend on the orientation of ; therefore,

~~~~~~~~~ = 2~ f  
~am 

M (X
~Ycim

) Aa(X~~/2~Yam ) dYcim (C.9)
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APPENDIX D.

COMPUTATION OF POWER-REFLECTION COEFFICIENT
- IN THE PRESENCE OF A LINEAR TEMPERATURE PROFILE

The mathematics involving the computation of received power in an

atmosphere with a linear temperature profile is considered in this

Appendix. It can be observed from Eq. (5.49) that the phase of the

acoustic wave has a quadratic dependence , and , therefore, use is made

of Fresnel sine and cosine integrals. The quantity F [defined in

Eqs. (5.49) and (5.50)] is eval uated

R1 2 -i(2k r—a)
F = f cos[ k r - ~r 3 e e dr (0.1)

= agka/(4To) . 
(0.2)

and ci is a constant. Initially, the Fresnel sine and cosine integrals

are defined as follows [Abramowitz and Stegun, 1968],

Cf(x ) = J cos (
~ 

t2) dt (D.3a )

Sf(x) 
= 
J 

sin (
~ 

t2) dt (D.3b )

Some useful properties of these integrals are

Cf(X) 
-
~ 1/2 ; Sf(x) -

~ 1/2 as x (D.4)

Cf(x) x ; Sf(X) ~~x
3 as x -

~ 0 (0.5)

Cf(- x) 
= -Cf(x) ; Sf(-X) = -Sf(X) (D.6)
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Using these properties , F is evaluated to be

F = Ji_ Icos(nR 2 +ci)[Cf
(Am

) - C
f(B )]

+ sin(fl R~ + ‘~)[Sf( A )  - S
f(Bfl

+ cos(n R~ -ci)[Cf( A )  - C
f(B )J

+ s i n(n R~ - cz)[S
f

(A~) — S
f(B )]

+ j cos(r1 R2 + ci)[-Sf(A ) + S
f(B )]

+ sin (r~ R
2 

+ ci)[Cf( A )  - C
f

(B ))

+ cos(ri R2 - ct)[$f
( A )  - Sf

(B~)]

- sin(n R~ - ci)[Cf(A~) - Cf (B p)] J j (0.7)

where

8 = agAa/To (0.8)

R = ~a (1 - 

n
a). R~ = ~ (i + ~~a) (D.9)

A = (R 1 - R ) ; Bm = (R
2 

- R )  (0.10)

A~ = (R 1 - R
n
); B~ ~~~~~(R2 - R~) (0.11)
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After scaling the variables by Aa

R~ = Ri/Aa ; R~ = R2/A a (0.12)

R~ = Rm/A = 
2 
(i - ~ a) (D.l3)

R~ = Rp/Xa 
= -

~~~ (1 + -
~
-
~
) (0.14)

= ~
_ 

; = —~i (D.15)A ~~8n 2~~

A = ,/~~ R1 
- —?-- (i - (0.16)m

, 2X ..

B = /~ R’ - ~~~~~~~~~ (0.17)m 2

A = “~ R’ - L (1 +~~~a) (0.18)p 1 A

B = ‘/~ R’ - —
~~-- (1 + ._.

~
) (D.19)p 2 

~~~ 
A

flR~ = 

~~~~ 
(~ 

- ~ a 
)

2 
(0.20)

2A 2
nR~ = ?j- (~ + -

~~

_

~~~ 
) (0.21)

For ag 10 °K/km and T0 300°K; IR~I > I (2Aa)/~ 
= J (2T0)/aq l

60 km. Hence IR~I is much larger than R1 and R2 for ranges

under consider (< 10 kilometers). Then ,
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lS f(A~) - Sf(B~)I -
~ 0 ; IC f(A~) - Cf(B~)l 0

Therefore,

R -R

F ~ e~~~~~~ j~ 

m 
e~~~

2
dx (D.22)

R2
_R
m

If ci = -T)R~, x is the altitude of the acoustic pulse, the length of

the acoustic-wave train is short , and R1 
- R2 

= na Xa, then

Fl r
~ac Xa/’2 which is the maximum value of ~FI . This maximum value

of Fl occurs when 2A a/A e 
= P - 8X/ (2Aa)]~ 

The modified Bragg-

scatter condition for the coherent reflection of electromagnetic energy

from an acoustic pulse at x for t 6x/(2X a)~ 
-< 1 , therefore, is

A a x
2[l + (D.23)

which can be explained by the fact that peak power is reflected back

when the interaction between electromagnetic and acoustic waves is

maximum.
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APPENDI X E
COMPUTATION OF NORMALIZED RECEIVED POWER
IN THE PRESENCE OF HORIZONTAL WINDS

The mathematical details involving the computati on of received

power in the presence of constant horizonta l wi nds are presented in this

appendix. An asymptotic expression for the received power is derived ,

using an asymptotic expression for a Bessel function of the fi rst kind

and zeroth order J0(x). Equations (5.66) and (5.67) define F as

a quanti ty proportional to the strength of the received signa l

-i(2k r ’ -ci ) 
~F

~ 
= f cos Sw(~

’) e e d ~~
‘ (E.1)

Vas

S
~
(
~
) = kar [~ ~~~~~ 

~
] (E.2)

where

= (cosr~, cos ç sins, sin~~sin5) (E.3a)

<‘> (c~ x><~iy>~~<wz>) (E.3b)

0; <w~>= 
constant, < w >  = constant

<w > =  
W

h 
COS ; <wi> = w~ sin (E.3c)

and w~ = <w~~ 
+ <w >2 (E.3d )

then from Eq. (E.2)

s(~) = k
~
r [1 - cos (,- 4 ) sine] (E.4)

Some useful definitions and properties of the Bessel function of fi rst

kind and zeroth order are listed below [Watson, 1966]:
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2n+ i -ix sin~
J0(x ) = 

~~ f e d~ where ... is any angle (E.5)

J0(-x) 
= J0(x) ( E.6)

2
J (x) 1 - 

~~— for x -. 0 (E.7)

j  (x) /-
~

-— cos ( x - 
~~

-) for  x - 1 (E.8)4

Using these properties ,

F - 2 ~l e/2 i
~~

ka
_2k

e
r’+

~ + 
i{(_k

a
_2k

e)r’+a}
I__UI_Il 

- ux 
j  j [e e I
R2 0

~~ ( k r
l ~~~ sine) sins do dr ’ (E.9)

Let x be the height of the acoustic pulse. Because Isin o l ~ 1 ,

k x  W
h

/ C
o 

1 implies that the effect of horizontal winds can be

neylected and F
~ 

Fwmax as in Eq.( 5.68). For kax6wh/co 
— . 1

and ‘ 1 , a large-argument approximation for J0() in Eq. (E.9)

~an be used. This approximation , howeve r, is not good over the entire

range of ~ because the argument of the Bessel function becomes 0 for

= 0. This approximation gives rise to a minor error in the final

result because the integrand has sin 0 as a factor. In addition ,

sin S ~ for sin (0/2) is small; therefore

2 
R 1 i{(k -2k )r ’+ci} i{(-k -2k )r’+cz}

F = rix
J 

[e a e + e  a e

R2

I5(r ’)dr ’ (E.lO)

where

106

~

- . -

~

--

~

—- - 

_



6/2
10(r ’) = 

~~k r 5
2
wh/c~~

l/2 
fe

1!2 
C0S
(
kar’ 

~~~~ e -

Using Erd~lyi ’s theorem [Popoulis , l968J , 1
0
(r’) is evaluated

asymptotically to be

I (r’) = (
~)l/2( r ’ ~~

)
~3/2 sin(k r’ - 

(E.12)S 71 a c0 ~a c0 2 4/

Note that the sinusoidal term in this equation varies little over the

acoustic pulse when n (w h/c )(ô ~~ is much less than unity . Under

the Bragg-scatter condition A = 2A a and using Eqs . (5.68), (E.1O)

an d (E.12), therefore

;F ~
2 20.37 cos 2[k x 

~ 
wh/(2L ) - 3~/4]= a 

-
~~~ (E.13)

wmax (kaX 0 wh/co)

Because

~
‘rw~

’rmax = 

~ w~
2
”~~max 

(E.l4)

where P is the power received in presence of horizontal winds and

rrl)aX ’ given by Eq. (5.41), is the power received in a static atmosphere .

Therefore

P 20 .37 cos 2[k x w /(2c ) - 3ir/4]rw a h ~ (E.15)

~rmax (kax ~ wh/cO)
3

where k x  6 W h/C 0 >> 1
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